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As single-cell RNA sequencing (scRNA-seq) has become more 
accessible, the design of single-cell experiments has become 
increasingly complex. Researchers regularly use scRNA-seq 

to quantify the effect of a drug, gene knockout or other experimen-
tal perturbation on a biological system. However, quantifying the 
differences between single-cell datasets collected from multiple 
experimental conditions remains an analytical challenge1. This task 
is hindered by biological heterogeneity, technical noise and uneven 
exposure to a perturbation. Furthermore, each single-cell dataset 
comprises several intrinsic structures of heterogeneous cells, and 
the effect of the treatment condition could be diffuse across all cells 
or isolated to particular populations. To address this, we developed 
a method that quantifies the probability that each cell state would be 
observed in a given sample condition.

Our goal is to quantify the effect of an experimental perturbation 
on every cell observed in matched treatment and control scRNA-seq 
samples of the same biological system. We begin by modeling the 
cellular transcriptomic state space as a smooth, low-dimensional 
manifold or set of manifolds. This approach has been previously 
applied to characterize cellular heterogeneity and dynamic biologi-
cal processes in single-cell data2–8. We then define and calculate a 
sample-associated density estimate, which quantifies the density 
of each sample over the manifold of cell states. We then consider 
differences in the sample-associated density estimates for each cell 
to calculate a sample-associated relative likelihood, which quanti-
fies the effect of an experimental perturbation as the likelihood of 
observing each cell in each experimental condition (Fig. 1).

Almost all previous work quantifying differences between 
single-cell datasets relies on discrete partitioning of the data before 
downstream analysis9–16. First, datasets are merged, applying either 

batch normalization15,16 or a simple concatenation of data matri-
ces9–14. Next, clusters are identified by grouping either sets of cells 
or modules of genes. Finally, within each cluster, the cells from 
each condition are used to calculate statistical measures, such as 
fold change between samples. Even recently described methods for 
identifying cell composition changes between scRNA-seq datasets 
such as MILO17 and scCODA18 limit the resolution of their analy-
sis to graph neighborhoods or discrete cluster labels, respectively. 
However, reducing experimental analysis to the level of clusters 
sacrifices the power of single-cell data. We demonstrate cases 
where subsets of a cluster exhibit divergent responses to a pertur-
bation that were missed in published analysis that was limited to 
clusters derived using data geometry alone. Instead of quantifying 
the effect of a perturbation within clusters, we focus on the level of 
single cells.

In the sections that follow, we show that the sample-associated 
relative likelihood has useful information for the analysis of experi-
mental conditions in scRNA-seq. First, the relative likelihoods of 
each condition can be used to identify the cell states most and least 
affected by an experimental treatment. Second, we show that the fre-
quency composition of the sample label and the relative likelihood 
scores can be used as the basis for a clustering algorithm that we call 
vertex frequency clustering (VFC). VFC identifies populations of 
cells that are similarly affected (enriched, depleted or unchanged) 
between conditions at the level of granularity of the perturbation 
response. Third, we obtain gene signatures of a perturbation by per-
forming differential expression between VFCs.

We call the algorithm to calculate the sample-associated density 
estimate and relative likelihood the MELD algorithm, so named for 
its utility in joint analysis of single-cell datasets. The MELD and VFC 
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algorithms are provided in an open-source Python package available 
on GitHub at https://github.com/KrishnaswamyLab/MELD.

Results
Overview of the MELD algorithm. We propose a framework for 
quantifying differences in cell states observed across single-cell 
samples. The power of scRNA-seq as a measure of an experimental 
treatment is that it provides samples of cell state at thousands to 
millions of points across the transcriptomic space in varying exper-
imental conditions. Our approach is inspired by recent successes 
in applying manifold learning to scRNA-seq analysis19. The mani-
fold model is a useful approximation for the transcriptomic space 
because biologically valid cellular states are intrinsically low dimen-
sional with smooth transitions between similar states. In this con-
text, our goal is to quantify the change in enrichment of cell states 
along the underlying cellular manifold as a result of an experimental 
treatment (Fig. 1).

For an intuitive understanding, we first consider a simple 
experiment with one sample from a treatment condition and one 
sample from a control condition. Here, sample refers to a library 
of scRNA-seq profiles, and condition refers to a particular config-
uration of experimental variables. In this simple experiment, our 
goal is to calculate the relative likelihood that each cell would be 
observed in either the treatment or control condition over a mani-
fold approximated from all cells from both conditions. This relative 
likelihood can be used as a measure of the effect of the experimen-
tal perturbation because it indicates, for each cell, how much more 
likely we are to observe that cell state in the treatment condition 
relative to the control condition (Fig. 1). We refer to this ratio as 
the sample-associated relative likelihood. The steps to calculate the 

sample-associated relative likelihood are given in Algorithm 1, and 
a visual depiction can be found in Suppplementary Fig. 1.

As has been done previously, we first approximate the cellu-
lar manifold by constructing an affinity graph between cells from 
all samples2–8. In this graph, each node corresponds to a cell, and 
the edges between nodes describe the transcriptional similarity 
between the cells. We then estimate the density of each sample over 
the graph using graph signal processing (GSP)20. A graph signal is 
any function that has a defined value for each node in a graph. Here, 
we use labels indicating the sample origin of each cell to develop 
a collection of one-hot indicator signals over the graph, with one 
signal per sample. Each indicator signal has value 1 associated with 
each cell from the corresponding sample and value 0 elsewhere. In a 
simple two-sample experiment, the sample indicator signals would 
comprise two one-hot signals—one for the control sample and one 
for the treatment sample. These one-hot signals are column-wise L1 
normalized to account for different numbers of cells sequenced in 
each sample. After normalization, each indicator signal represents 
an empirical probability density over the graph for the correspond-
ing sample. We next use these normalized indicator signals to calcu-
late a kernel density estimate (KDE) of each sample over the graph.

Algorithm 1 The MELD algorithm. Input: Dataset 
X ¼ fx1; x2; :::; xng; xi 2 Rm

I
; Condition labels y s.t. yi indicates the 

condition in which observation xi was sampled.
Output: Sample-associated relative likelihood ~Ynorm 2 Rn ´ d

I
 

where d is the number of unique conditions in y.
1. Build graph G = {V, E} by applying anisotropic or other kernel 

function on X;
2. Instantiate one-hot Indicator Y, with one column for each 

unique condition in y;
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Fig. 1 | Illustrative description of perturbation analysis using MELD and VFC. a, To quantify the effect of an experiment, we model single-cell experiments 
as samples from a probability density function (pdf) over the underlying transcriptomic cell state space manifold. The pdf for the control sample is the 
frequency with which cell states are observed in the control sample compared to the overall frequency of the cell state in both samples combined. In 
this context, the effect of an experimental perturbation is to alter this probability density and, thus, the data density in the treatment sample relative to 
the control. Therefore, the effect of an experimental perturbation can be quantified as the change in the probability density in the experiment condition 
relative to the control. b, The sample-associated relative likelihood quantifies this effect by computing a kernel density estimate (KDE) over the cell 
similarity graph using graph signals representing indicator vectors for each sample. The sample-associated relative likelihood indicates the likelihood 
that a particular cell is from the treatment or control conditions. c, In traditional analysis of scRNA-seq datasets, the clusters are based solely on the 
data geometry, and changes in abundance between conditions might not align with the true affected populations. Using the sample-associated relative 
likelihood and VFC, we can identify the correct cluster resolution for downstream analysis.
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3. Column-wise L1 normalize Y to yield Ynorm;
4. Apply manifold heat filter over (G, Ynorm) to calculate 

~Y
I
, the KDE of the data in each condition, also referred to as the 

sample-associated density estimates;
5. Row-wise L1 normalize ~Y

I
 to yield ~Ynorm

I
 also referred to as the 

sample-associated relative likelihoods. If the dataset comprises mul-
tiple experimental replicates, L1 normalization is applied to each 
replicate independently.

Calculating sample-associated density estimates. A popular 
non-parametric approach to estimating data density is using a KDE, 
which relies on an affinity kernel function. To estimate the den-
sity of single-cell samples over a graph, we turn to the heat kernel. 
This kernel uses diffusion to provide local adaptivity in regions of 
varying data density21, such as is observed in single-cell data. Here, 
we extend this kernel as a low-pass filter over a graph to estimate 
the density of a sample represented by the sample indicator sig-
nals defined above. To begin, we take the Gaussian KDE, which is 
a well-known tool for density estimation, in Rd

I
. We then generalize 

this form to smooth manifolds. The full construction of this gen-
eralization is described in detail in the Methods, and a high-level 
overview is provided here.

A kernel density estimator f̂ ðx; tÞ
I

 with bandwidth t > 0 and ker-
nel function K(x, y, t) is defined as

f̂ ðx; tÞ ¼ 1
N

XN

i¼1
Kðx;Xi; tÞ; x 2 X ð1Þ

where X is the observed data, x is some point in X :¼ Rd

I
 (that is, 

X
I
 is defined as Rd

I
) and X

I
 is endowed with the Gaussian kernel 

defined as

Kðx; y; tÞ ¼ 1

ð4πtÞd=2
e� jx�yj jj22=4t ð2Þ

Thus, Equation (2) defines the Gaussian KDE in Rd

I
. However, this 

function relies on the Euclidean distance jjx � yjj22
I

, which is derived 
from the kernel space in Rd

I
. Because manifolds are only locally 

Euclidean, we cannot apply this KDE directly to a general manifold.
To generalize the Gaussian KDE to a manifold, we need to define a 

kernel space (that is, the range of a kernel operator) over a manifold. 
In Rd

I
, the kernel space is often defined via infinite weighted sums 

of sines and cosines, also known as the Fourier series. However, this 
basis is not well defined for a Riemannian manifold, so we, instead, 
use the eigenbasis of the Laplace operator as our kernel basis. The 
derivation and implication of this extension is formally explored 
in the Methods. The key insight is that, using this kernel space, the 
Gaussian KDE can be defined as a filter constructed from the eigen-
vectors and eigenvalues of the Laplace operator on a manifold. When 
this manifold is approximated using a graph, we define this KDE as a 
graph filter over the graph Laplacian given by the following equation:

f̂ ðx; tÞ ¼ e�tLx ¼ ΨhðΛÞΨ�1x ð3Þ

where t is the kernel bandwidth, L
I
 is the graph Laplacian, x is the 

empirical density, Ψ and Λ are the eigenvectors and correspond-
ing eigenvalues of L

I
 and e�tL

I
 is the matrix exponential. This signal 

processing formulation can alternatively be formulated as an opti-
mization with Tikhonov regularization, which seeks to reconstruct 
the original signal while penalizing differences along edges of the 
graph. This connection is further explored in the Methods.

To achieve an efficient implementation of the filter in Equation (3),  
the MELD algorithm considers the spectral representation of the 
sample indicator signals and uses a Chebyshev polynomial approxi-
mation22 to efficiently compute the sample-associated density esti-
mate (Methods). The result is a highly scalable implementation. 

The sample-associated density estimate for two conditions can be 
calculated on a dataset of 50,000 cells in less than 8 min in a free 
Google Colaboratory notebook (freely available at colab.research.
google.com; most instances provide a 4-core 2-GHz CPU and 20 GB 
of RAM), with more than 7 min of that time spent constructing a 
graph that can be reused for visualization3 or imputation4. With the 
sample-associated density estimates, it is now possible to identify the 
cells that are most and least affected by an experimental perturbation.

Using sample-associated relative likelihood to quantify differ-
ences between experimental conditions. Each sample-associated 
density estimate over the graph indicates the probability of observ-
ing each cell within a given experimental sample. For example, in 
a healthy peripheral blood sample, we would expect high-density 
estimates associated with abundant blood cells, such as neutrophils 
and T cells, and low-density estimates associated with less abundant 
cell types, such as basophils and eosinophils. When considering the 
effect of an experimental perturbation, we are not only interested in 
these density estimates directly; we also want to quantify the change 
in density associated with a change in an experimental variable. 
For example, one might want to know if a drug treatment causes 
a change in probability of observing some kinds of blood cells in 
peripheral blood.

When examining the rows of the sample-associated density esti-
mates for a single cell, the values represent the likelihood of observ-
ing that cell in each experimental condition. To quantify the change 
in likelihood across conditions, we apply a normalization across 
the likelihoods for each cell to calculate sample-associated relative 
likelihoods. These relative likelihoods sum to 1 for each cell and 
provide a basis for quantifying the change in likelihood of observ-
ing a cell in each condition. We then use these relative likelihoods to 
identify cell states that are enriched, depleted or unaffected by the 
perturbation.

The sample-associated relative likelihoods can be used to analyze 
scRNA-seq perturbation studies of varying experimental designs. 
For cases with only one experimental condition and one control 
condition, we typically refer only to the sample-associated relative 
likelihood of the treatment condition for downstream analysis. For 
more complicated experiments comprising replicates, we normal-
ize matched treatment and control conditions individually and then 
average the relative likelihood of the each condition across rep-
licates, as in the analysis of the zebrafish and pancreatic datasets 
below. With datasets comprising three or more experimental condi-
tions, each sample-associated relative likelihood may be used indi-
vidually to analyze cells that are enriched, depleted or unaffected 
in the corresponding condition. We expect that this flexibility will 
enable the use of sample-associated density estimates and relative 
likelihoods across a wide range of single-cell studies.

VFC identifies cell populations affected by a perturbation. A 
common goal for analysis of experimental scRNA-seq data is to 
identify subpopulations of cells that are responsive to the experi-
mental treatment. Existing methods cluster cells by transcriptome 
alone and then attempt to quantify the degree to which these clus-
ters are differentially represented in the two conditions. However, 
this is problematic because the granularity, or sizes, of these clus-
ters might not correspond to the sizes of the cell populations that 
respond similarly to experimental treatment. Additionally, when 
partitioning data along a continuum, cluster boundaries are some-
what arbitrary and might not correspond to populations with dis-
tinct differences between conditions. Our goal is to identify clusters 
that are not only transcriptionally similar but also respond similarly 
to an experimental perturbation (Fig. 2).

A naive approach to identify such clusters would be to sim-
ply concatenate the sample-associated relative likelihood to the 
gene expression data as an additional feature and cluster on these 
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combined features. However, the magnitude of the relative likeli-
hood does not give a complete picture of differences in response 
to a perturbation. For example, even in a two-sample experiment, 
there are multiple ways for a cell to have a sample-associated relative 
likelihood of 0.5. In one case, it might be that there is a continuum 
of cells one end of which is enriched in the treatment condition, 
and the other end is enriched in the control condition. In this 
case, transitional cells halfway through this continuum will have a 
sample-associated relative likelihood of 0.5 (we show an example 
of this in the analysis of the T cell dataset below). Another scenario 
that would result in a relative likelihood of 0.5 is even mixing of 
a population of cells between control and treatment conditions 
with no transition—that is, cells that are part of a non-responsive 
cell subtype that is unchanged between conditions (we show an 
example of this in the analysis of the pancreatic dataset below and 
Suppplementary Fig. 2). To differentiate between such scenarios, we 
must consider not only the magnitude of the sample-associated rel-
ative likelihood but also the frequency of the input sample indicator 
signals over the manifold. Indeed, in the transitional case, the input 
sample labels change gradually or have low frequency over the man-
ifold, and, in the even-mixture case, they change frequently between 
closely connected cells or have high frequency over the manifold.

As no contemporary method is suitable for resolving these 
cases, we developed an algorithm that integrates gene expression, 
the magnitude of sample-associated relative likelihoods and the 
frequency response of the input sample labels over the cellular 
manifold (Suppplementary Fig. 2). In particular, we cluster using 
local frequency profiles of the sample indicator signal around 
each cell. This method, which we call VFC, is an adaptation of the 
signal-biased spectral clustering proposed in ref. 23. The VFC algo-
rithm provides a feature basis for clustering based on the spectro-
gram23 of the sample indicator signals, which can be thought of as 
a histogram of frequency components of graph signals. We observe 
that we can distinguish between non-responsive populations of 
cells with high-frequency sample indicator signal components and  

transitional populations with lower-frequency indicator signal 
components. The VFC feature basis combines this frequency infor-
mation with the magnitude of the sample-associated relative likeli-
hood and the cell similarity graph to identify phenotypically similar 
populations of cells with uniform response to a perturbation. The 
algorithm is discussed in further detail in the Methods.

With VFC, it is possible to define a new paradigm for recover-
ing the gene signature of a perturbation. In traditional analysis, 
where clusters are calculating data geometry alone, gene signatures 
are often calculated using differential expression analysis between 
experimental conditions within each cluster (Suppplementary  
Fig. 3a). The theory of the traditional framework is that these 
expression differences reflect the change in cell states observed as a 
result of the perturbation. However, if the cluster contains multiple 
subpopulations that each contain different responses to the pertur-
bation, we can first separate these populations using VFC and then 
compare each subpopulation individually (Suppplementary Fig. 3b).  
Not only does this allow for more finely resolved comparisons,  
we show in the following section that this approach is capable of 
recovering gene signatures more accurately than directly comparing 
two samples.

We describe a full pipeline for analysis of scRNA-seq datasets 
with MELD and VFC in Supplementary Note 1 and Fig. S4.

Quantitative validation of the MELD and VFC algorithms. No 
previous benchmarks exist to quantify the ability of an algorithm 
to capture changes in density between scRNA-seq samples. To 
validate the sample-associated relative likelihood and VFC algo-
rithms, we used a combination of simulated scRNA-seq data and 
synthetic experiments using previously published datasets. To cre-
ate simulated scRNA-seq data, we used Splatter24. To ensure that the 
algorithms worked on real scRNA-seq datasets, we also used two 
previously published datasets of Jurkat T cells13 and cells from whole 
zebrafish embryos15. In each dataset, we created a ground truth rela-
tive likelihood distribution over all cells that determines the relative 
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likelihood that each cell would be observed in one of two simulated 
conditions. In each simulation, different populations of cells of 
varying sizes were depleted or enriched. Cells were then randomly 
split into two samples according to this ground truth relative likeli-
hood and used as input to each algorithm. More detail on the com-
parison experiments is provided in the Methods.

We performed three sets of quantitative comparisons. First, we 
calculated the degree to which the MELD algorithm captured the 
ground truth relative likelihood distribution in each simulation. 
We found that MELD outperformed other graph-smoothing algo-
rithms by 10–52% on simulated data and 36–51% on real datasets 
(Fig. 3 and Suppplementary Table 1). We also determined that the 
MELD algorithm is robust to the number of cells captured in the 
experiment, with only a 10% decrease in performance when 65% 
of the cells in the T cell dataset were removed (Supplementary  
Fig. 5). We used results from these simulations to determine the 
optimal parameters for the MELD algorithm (Supplementary 
Note 3). Next, we quantified the accuracy of the VFC algorithm 
to identify clusters of cells that were enriched or depleted in each 
condition. When compared to six common clustering algorithms, 
including Leiden25 and CellHarmony26, VFC was the top perform-
ing algorithm on every simulation on the T cell data and best per-
forming, on average, on the zebrafish dataset, with a 57% increase 
in average performance over Louvain, which was the next best 
algorithm (Suppplementary Figs. 6a–c and 7 and Suppplementary 
Table 2). Finally, we calculated how well VFC clusters could be used 
to calculate the gene signature of a perturbation. Gene signatures 
obtained using VFC were compared to signatures obtained using 
direct comparison of two conditions—the current standard—and 
those obtained using other clustering algorithms (Supplementary 
Fig. 6d). These results confirm that MELD and VFC outperform 
existing methods for analyzing multiple scRNA-seq datasets from 
different experimental conditions.

The sample-associated relative likelihood identifies a biologically 
relevant signature of T cell activation. To demonstrate the biologi-
cal relevance of the MELD algorithm, we analyze Jurkat T cells cul-
tured for 10 d with and without anti-CD3/anti-CD28 antibodies as 
part of a Cas9 knockout screen published in ref. 13 (Fig. 4a). The 
goal of this experiment was to characterize the transcriptional sig-
nature of T cell receptor (TCR) activation and determine the effect 
of gene knockouts in the TCR pathway. First, we visualized cells 
using PHATE, a visualization and dimensionality reduction tool for 
scRNA-seq data (Fig. 4b)3. We observed a large degree of overlap in 
cell states between the stimulated and control conditions, as noted 
in the original study13.

To determine a gene signature of the TCR activation, we con-
sidered cells with no CRISPR perturbation. First, we computed 
sample-associated relative likelihood and VFC clusters on these 
samples. Then, we derived a gene signature by performing differen-
tial expression analysis between VFC clusters with the highest and 
lowest relative likelihood values. We identified 2,335 genes with a 
q value < 0.05 as measured by a rank sum test with a Benjamini–
Hochberg false discovery rate correction27. We then compared 
this signature to those obtained using the same methods from our 
simulation experiments. To determine the biological relevance of 
these signature genes, we performed gene set enrichment analysis 
on both gene sets using EnrichR28. Considering the Gene Ontology 
(GO) terms highlighted in ref. 13, we found that the MELD gene list 
has the highest combined score in all of the gene terms we exam-
ined (Fig. 4d). These results show that the sample-associated rela-
tive likelihood and VFC are capable of identifying a biologically 
relevant dimension of T cell activation at the resolution of single 
cells. Furthermore, the gene signature identified using the MELD 
and VFC outperformed standard differential expression analyses 
to identify the signature of a real-world experimental perturbation.

Finally, to quantitatively rank the effect of each Cas9 gene 
knockout on TCR activation, we examined the distribution of 
sample-associated relative likelihood values for all stimulated 
cells transfected with guide RNAs (gRNAs) targeting a given gene 
(Suppplementary Fig. 8). We observed a large variation in the effect 
of each gene knockout consistent with the published results in  
ref. 13. Encouragingly, our results agree with the bulk RNA sequenc-
ing validation experiment in ref. 13, showing strongest depletion 
of TCR response with knockout of kinases LCK and ZAP70 and 
adaptor protein LAT. We also found a slight increase in relative 
likelihood of the stimulation condition in cells in which negative 
regulators of TCR activation are knocked out, including PTPN6, 
PTPN11 and EGR3. Together, these results show that the MELD 
and VFC algorithms are suitable for characterizing a biological 
process, such as TCR activation in the context of a complex Cas9 
knockout screen.

VFC improves characterization of subpopulation response 
to chordin loss of function. To demonstrate the utility of 
sample-associated relative likelihood analysis applied to data-
sets composed of multiple cell types, we analyzed a chordin 
loss-of-function experiment in zebrafish using CRISPR–Cas9 
(Suppplementary Fig. 9)15. In the experiment published in ref. 15, 
zebrafish embryos were injected at the one-cell stage with Cas9 and 
gRNAs targeting either chordin (chd), a BMP antagonist required 
for developmental patterning, or tyrosinase (tyr), a control gene. 
Embryos were collected for scRNA-seq at 14–16 h after fertilization. 
We expect incomplete penetrance of the perturbation in this dataset 
because of the mosaic nature of Cas9 mutagenesis29.

First, we calculate the sample-associated relative likelihood 
between the chd and tyr conditions. Because the experiment was 
performed in triplicate with three paired chd and tyr samples, we 
first calculated the sample-associated density estimates for each 
of the six samples. We then normalized the density estimated 
across the paired chd and tyr conditions. Finally, we averaged the 
replicate-specific relative likelihoods of the chd condition for down-
stream analysis. We refer to this averaged likelihood simply as the 
chordin-relative likelihood (Suppplementary Fig. 9).

To characterize the effect of mutagenesis on various cell popula-
tions, we first examined the distribution of chordin-relative likeli-
hood values across the 28 cell state clusters generated in ref. 15 (Fig. 
5b). We found that, overall, the most enriched clusters contain 
mesodermal cells, and the most depleted clusters contain dorsally 
derived neural cells matching the ventralization phenotype previ-
ously reported with chd loss of function30–32. However, we observed 
that several clusters had a wide range of chordin-relative likelihood 
values, suggesting that there are cells in these clusters with different 
perturbation responses. Using VFC analysis, we found that several 
of these clusters contained biologically distinct subpopulations of 
cells with divergent responses to chd knockout.

An advantage of using MELD and VFC is the ability to char-
acterize the response to the perturbation at the resolution corre-
sponding to the perturbation response (Fig. 2c). We infer that the 
resolution of the published clusters is too coarse because the distri-
bution of chordin-relative likelihood values is very large for several 
of the clusters. For example, the chordin-relative likelihoods within 
the tailbud, presomitic mesoderm (TPM) range from 0.29 to 0.94, 
indicating that some cells are strongly enriched, whereas others are 
depleted. To disentangle these effects, we performed VFC subclus-
tering for all clusters using the strategy proposed in Supplementary 
Note 1. We found that 12 of the 28 published clusters warranted fur-
ther subclustering with VFC, resulting in a total of 50 final cluster 
labels (Suppplementary Fig. 10j). To determine the biological rel-
evance of the VFC clusters, we manually annotated each of the three 
largest clusters subdivided by VFC, revealing previously unreported 
effects of chd loss of function within this dataset. A full exploration  
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can be found in Supplementary Note 2, with the results of TPM 
cluster shown in Fig. 5c–f.

Identifying the effect of interferon-gamma stimulation on pan-
creatic islet cells. To determine the ability of the MELD and VFC to 
uncover biological insights, we generated and characterized a data-
set of human pancreatic islet cells cultured for 24 h with and with-
out interferon-gamma (IFN-γ), a system with considerable clinical 
relevance to auto-immune diseases of the pancreas, such as type 
I diabetes mellitus and islet allograft rejection33. Previous studies 
characterized the effect of these cytokines on pancreatic beta cells 
using bulk RNA sequencing34, but no studies have addressed this 
system at single-cell resolution.

To better understand the effect of immune cytokines on islet 
cells, we cultured islet cells from three donors for 24 h with and 
without IFN-γ and collected cells for scRNA-seq. After filtering, we 
obtained 5,708 cells for further analysis. Examining the expression 
of marker genes for major cell types of the pancreas, we observed 
a noticeable batch effect associated with the donor ID, driven by 

the maximum expression of glucagon, insulin and somatostatin in 
alpha, beta and delta cells, respectively (Supplementary Fig. 11a). To 
correct for this difference while preserving the relevant differences 
between donors, we applied the mutual nearest neighbors (MNN) 
kernel correction described in the Methods. Note that, here, the 
MNN correction was only applied across donors, not across the 
IFN-γ treatment. We developed guidelines for applying batch cor-
rection before running MELD, as shown in Supplementary Note 3.

To quantify the effect of IFN-γ treatment across these cell types, 
we calculated the sample-associated relative likelihood of IFN-γ 
stimulation using the same strategy to handle matched replicates as 
was done for the zebrafish data (Fig. 6a). We then used established 
marker genes of islet cells35 to identify three major populations of 
cells corresponding to alpha, beta and delta cells (Suppplementary 
Figs. 6a,b and 11b). We next applied VFC to each of the three 
endocrine cell types and identified a total of nine clusters. Notably, 
we found two clusters of beta cells with intermediate IFN-γ rela-
tive likelihood values. These clusters are cleanly separated on the 
PHATE plot of all islet cells (Fig. 6a), and, together, the beta cells 

PHATE 1

PH
AT

E 
2

α-CD3/CD28 bead

a Experimental labels

PHATE 1

PH
AT

E 
2

PHATE 1

T cell receptor
signaling pathway

TCR signaling
in naive CD8+ T cells

TCR signaling
in naive CD4+ T cells

IL2 signaling events
mediated by PI3K

IL6-mediated
signaling events

T cell
activation

0 10 20 30
Combined score

40

CellHarmony
k-means
Leiden
Louvain
Sample labels
Spectral
VFC

PH
AT

E 
2

After MELD

Hi

Low

Activation
relative likelihood

c

Stimulated
Unstimulated

b
Control

(unstimulated)

Treatment
(stimulated)

Activated

Naive
Intermediate

Vertex freq. clusters

Diff. exp.

d

Fig. 4 | MELD recovers signature of TCR activation. a, Jurkat T cells were stimulated with α-CD3/CD28-coated beads for 10 d before collection for 
scRNA-seq. b, Examining a PHATE plot, there is a large degree of overlap in cell state between experimental conditions. However, after MELD, it is 
clear which cell states are prototypical of each experimental condition. c, VFC identifies an activated, a naive and an intermediate population of cells. 
d, Signature genes identified by comparing the activated to naive cells are enriched for annotations related to TCR activation using EnrichR analysis. 
Combined scores for the MELD gene signature are shown in red, and scores for a gene signature obtained using the sample labels only are shown in gray. 
IL, interleukin.

Nature Biotechnology | VOL 39 | May 2021 | 619–629 | www.nature.com/naturebiotechnology 625

http://www.nature.com/naturebiotechnology


Analysis NATuRe BioTeCHnoloGy

Ada
xia

l

im
matu

re

0 tyr

1 chd

chd rel. 
likelihood

After MELD

PH
AT

E 
2

PHATE 1

Sample labels

PH
AT

E 
2

PHATE 1

b

0 tyr

1 chd

chd rel.
likelihood

0.5

PH
AT

E 
2

PHATE 1

Tailbud/PSM

Notochord

Hatching
gland

Epidermal
foxi3a

pfn1

Mixed 
(neural/epidermal)

Periderm

Cell states
PH

AT
E 

2

PHATE 1

TPM cluster

PHATE 1

c

d
Adaxial

immature

Myod1 Tbx6

Expression

e

a

Chd
1.0

0.8

0.6

0.4

0.2

0.0

Adaxial - immature

Presomitic mesoderm
Hematopoietic
Adaxial - mature

N
TC N
D

I
O

P
N

H
B

N
M

B
N

TE N
FP

M
PD

N
C

C
M

PA D
N

TS
C

N
C

N
R

B
EP

O
M

H
F

EN
D

LL
P

EP
A

H
G

EP
F G
L

PR
D

M
EN EP

P
M

BI
TP

M
M

LPTyr

Cluster ID

PH
AT

E 
2

Adaxial
mature

Hematopoietic
mesoderm

Presomitic
mesoderm

Full
cluster

Ada
xia

l

matu
re

Hem
ato

po
iet

ic

mes
od

erm

= Fold change (chd vs tyr)

f
n = 106

n = 643

n = 1,525

n = 1,370

n = 3,644

Pres
om

oit
ic

mes
od

erm

*

**

* = q value < 0.05

0.5

ch
d 

re
la

tiv
e 

lik
el

ih
oo

d

ch
d 

re
la

tiv
e 

lik
el

ih
oo

d

chdA
chdB
chdC
tyrA
tyrB
tyrC

1.0

0.8

0.6

0.4

0.2

0.0

0 5 0.0 2.5

0.0 2.5

0.0 2.5

0.0 2.5

0.0 2.5

0 5

0 5

0 5

0 5

Fig. 5 | Characterizing chordin Cas9 mutagenesis with MELD. a, PHATE shows a high degree of overlap of sample labels across cell types. Applying 
MELD to the mutagenesis vector reveals regions of cell states enriched in the chd or tyr conditions. b, Using published cluster assignments, we show that 
the chd-associated relative likelihood quantifies the effect of the experimental perturbation on each cell, providing more information than calculating fold 
change in the number of cells between conditions in each cluster (gray dot), as was done in the published analysis. The color of each point corresponds 
to the sample labels in a. Generally, average relative likelihood within each cluster aligns with the fold change metric. However, we can identify clusters, 
such as the TPM or TSC, with large ranges of relative likelihoods, indicating non-uniform response to the perturbation. c, Visualizing the TPM cluster using 
PHATE, we observe several cell states with mostly non-overlapping relative likelihood values. d, VFC identifies four cell types in the TPM. e, We see that the 
range of relative likelihood values in the TPM cluster is due to subpopulations with divergent responses to the chd perturbation. f, We observe that changes 
in gene expression between the tyr (blue) and chd (red) conditions is driven mostly by changes in abundance of subpopulations with the TPM cluster. PSM, 
presomitic mesoderm.

Nature Biotechnology | VOL 39 | May 2021 | 619–629 | www.nature.com/naturebiotechnology626

http://www.nature.com/naturebiotechnology


AnalysisNATuRe BioTeCHnoloGy

represent the largest range of IFN-γ relative likelihood scores in  
the dataset.

To further inspect these beta cell clusters, we consider a sepa-
rate PHATE plot of the cells in the four beta cell clusters (Fig. 6e). 
Examining the distribution of input sample signals values in these 
intermediate cell types, we find that one cluster, which we label 
as non-responsive, exhibits high-frequency input sample signals 

indicative of a population of cells that does not respond to an exper-
imental treatment. The responsive–mid cluster matches our charac-
terization of a transitional population with a structured distribution 
of input sample signals. Supporting this characterization, we find a 
lack of upregulation in IFN-γ-regulated genes, such as STAT1, in 
the non-responsive cluster, similarly to the cluster of beta cells with 
the lowest IFN-γ relative likelihood values (Fig. 6f).
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To understand the difference between the non-responsive beta 
cells and the responsive populations, we calculated differential 
expression of genes in the non-responsive clusters and all others. 
The gene with the greatest difference in expression was insulin, 
the major hormone produced by beta cells, which is approximately 
2.5-fold increased in the non-responsive cells (Fig. 6f). This cluster of 
cells bears resemblance to a recently described ‘extreme’ population 
of beta cells that exhibit elevated insulin messenger RNA (mRNA) 
levels and are found to be more abundant in diabetic mice36,37. That 
these cells appear non-responsive to IFN-γ stimulation and exhibit 
extreme expression of insulin suggests that the presence of extreme 
high insulin in a beta cell before IFN-γ exposure might inhibit the 
IFN-γ response pathway through an unknown mechanism.

We next characterized the gene expression signature of IFN-γ 
treatment across all three endocrine cell types (Fig. 6c,d). Using a 
rank sum test to identify genes that change the most between the 
clusters with highest and lowest IFN-γ relative likelihood values 
within each endocrine population, we identified 911 genes differ-
entially expressed in all three cell types. This consensus signature 
includes activation of genes in the JAK-STAT pathway, includ-
ing STAT1 and IRF1 (ref. 38), and in the IFN-mediated antiviral 
response, including MX1, OAS3, ISG20 and RSAD2 (refs. 39–41). 
The activation of both of these pathways was previously reported 
in beta cells in response to IFN-γ42,43. To confirm the validity of 
our gene signatures, we use EnrichR28 to perform gene set enrich-
ment analysis on the signature genes and found strong enrichment 
for terms associated with IFN signaling pathways (Supplementary  
Fig. 11d). From these results, we conclude that, although IFN-γ 
leads to upregulation of the canonical signaling pathways in all 
three cell types, the response to stimulation in delta cells is subtly 
different to that of alpha or beta cells.

Here, we applied MELD analysis to identify the signature of 
IFN-γ stimulation across alpha, beta and delta cells, and we iden-
tified a population of beta cells with high insulin expression that 
appears unaffected by IFN-γ stimulation. Together, these results 
demonstrate the utility of MELD analysis to reveal biological 
insights in a clinically relevant biological experiment.

Analysis of donor-specific composition. Although most of the 
analysis here focuses on two-condition experiments, we show that 
it is possible to use the sample-associated relative likelihood to 
quantify the differences between more than two conditions. In the 
islet dataset, we have samples of treatment and control scRNA-seq 
data from three different donors. To quantify the differences in cell 
profiles between donors, we first created a one-hot vector for each 
donor label and normalized across all three smoothed vectors. This 
produces a measure of how likely each transcriptional profile is to 
be observed in donor 1, 2 or 3. We then analyzed each of these sig-
nals for each cluster identified during the IFN-γ stimulation analy-
sis (Suppplementary Fig. 12). We found that all of the alpha cell and 
delta cell clusters are depleted in donor 3, and the non-responsive 
beta cell cluster is enriched primarily in donor 1. Furthermore, the 
most highly activated alpha cell cluster is enriched in donor 2. As 
with the sample-associated relative likelihood derived for the IFN-γ 
response, it is also possible to identify donor-specific changes in 
gene expression or clusters of cells differentially abundant between 
each donor. We propose that this strategy could be used to extend 
MELD analysis to experiments with multiple categorical experi-
mental conditions, such as data collected from different tissues or 
stimulus conditions.

Discussion
When performing multiple scRNA-seq experiments in various 
experimental and control conditions, researchers often seek to 
characterize the cell types or sets of genes that change from one 
condition to another. However, quantifying these differences is 

challenging owing to the subtlety of most biological effects relative 
to the biological and technical noise inherent to single-cell data. To 
overcome this hurdle, we designed the MELD and VFC algorithms 
to quantify compositional differences between samples. The key 
innovation in the sample-associated relative likelihood algorithm is 
quantifying the effect of a perturbation at the resolution of single 
cells using theory from manifold learning.

We have shown that our analysis framework improves over the 
current best practice of clustering cells based on gene expression 
and calculating differential abundance and differential expression 
within clusters. Clustering before quantifying compositional differ-
ences can fail to identify the divergent responses of subpopulations of 
cells within a cluster. Using the sample labels and sample-associated 
relative likelihood, we apply VFC to derive clusters of cells to identify 
cells that are most enriched in either condition and cells that are unaf-
fected by an experimental perturbation. We show that gene signatures 
extracted using these clusters outperform those derived from direct 
comparison of two samples or traditional clustering approaches.

We demonstrated the application of MELD analysis on single-cell 
datasets from three different biological systems and experimental 
designs. We provided a framework for handling matched treatment 
and control replicates and guidance on analysis of complex experi-
mental designs with more than two conditions and in the context 
of a single-cell Cas9 knockout screen. In our analysis of the zebraf-
ish dataset, we showed that the published clusters contained bio-
logically relevant subpopulations of cells with divergent responses 
to the experimental perturbation. We also described a previously 
unpublished dataset of pancreatic islet cells stimulated with IFN-γ 
and characterized a previously unreported subpopulation of beta 
cells that appeared unresponsive to stimulation. We related this to 
emerging research describing a beta cell subtype marked by high 
insulin mRNA expression and unique biological responses.

We anticipate MELD to have widespread use in many contexts 
because experimental labels can arise in many contexts. As we 
showed, if we have sets of single-cell data from healthy individu-
als versus sick individuals, the sample-associated relative likeli-
hood could indicate cell types specific to disease. This framework 
could potentially be extended to patient-level measurements where 
patients’ phenotypes, as measured with clinical variables and labo-
ratory values, can be associated with enriched states in disease or 
treatment conditions. Indeed, MELD has already seen use in several 
contexts44–48.
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Methods
In this section, we will provide details about our computational methods for 
computing the sample-associated density estimate and relative likelihood as well 
as extracting information from the sample label and sample-associated relative 
likelihood by way of a method we call VFC. We will outline the mathematical 
foundations for each algorithm, explain how they relate to previous works in manifold 
learning and GSP and provide details of the implementations of each algorithm.

Computation of the sample-associated density estimate. Computing the 
sample-associated density estimate and relative likelihood involves the following 
steps, each of which we will describe in detail.

	1.	 A cell similarity graph is built over the combined data from all samples where 
each node or vertex in the graph is a cell and edges in the graph connect cells 
with similar gene expression values.

	2.	 The sample label for each cell is used to create the sample-associated indicator 
signal.

	3.	 Each indicator signal is then smoothed over the graph to estimate the density 
of each sample using the manifold heat filter.

	4.	 Sample-associated density estimates for paired treatment and control samples 
are normalized to calculate the sample-associated relative likelihood.

Graph construction. The first step in the MELD algorithm is to create a cell 
similarity graph. In scRNA-seq, each cell is measured as a vector of gene expression 
counts measured as unique molecules of mRNA. Following best practices for 
scRNA-seq analysis1, we normalize these counts by the total number of unique 
molecular identifiers (UMIs) per cell to give relative abundance of each gene and 
apply a square root transform. Next, we compute the similarity of all pairs of cells 
by using their Euclidean distances as an input to a kernel function. More formally, 
we compute a similarity matrix W such that each entry Wij encodes the similarity 
between cell gene expression vectors xi and xj from the dataset X.

In our implementation, we use α-decaying kernel proposed in ref. 3 because, 
in practice, it provides an effective graph construction for scRNA-seq analysis. 
However, in cases where batch, density and technical artifacts confound graph 
construction, we also use an MNN kernel, as proposed in ref. 49.

The α-decaying kernel3 is defined as

Kk;αðx; yÞ ¼
1
2
exp � jjx � yjj2

εkðxÞ

� �α� �
þ 1
2
exp � jjx � yjj2

εkðyÞ

� �α� �
; ð4Þ

where x, y are data points, εk(x), εk(y) are the distance from x, y to their k-th nearest 
neighbors, respectively, and α is a parameter that controls the decay rate (that is, 
heaviness of the tails) of the kernel. This construction generalizes the popular 
Gaussian kernel, which is typically used in manifold learning but also has some 
disadvantages alleviated by the α-decaying kernel, as explained in ref. 3.

The similarity matrix effectively defines a weighted and fully connected graph 
between cells such that every two cells are connected and the connection between 
cells x and y is given by K(x, y). To allow for computational efficiency, we sparsify 
the graph by setting very small edge weights to 0.

Although the kernel in Equation (4) provides an effective way of capturing 
neighborhood structure in data, it is susceptible to batch effects. For example, 
when data are collected from multiple patients, subjects or environments (generally 
referred to as ‘batches’), such batch effects can cause affinities within each batch 
and are often much higher than between batches, thus creating separation between 
batches rather than following the underlying biological state. To alleviate such 
effects, we adjust the kernel construction using an approach inspired by recent 
work in ref. 49 on the MNN kernel. We extend the standard MNN approach, which 
was previously applied to the KNN kernel, to the α-decay kernel as follows. First, 
within each batch, the affinities are computed using Equation (4). Then, across 
batches, we compute slightly modified affinities as

K 0
k;αðx; yÞ ¼ min exp � jjx � yjj2

ε0kðxÞ

� �α� �
; exp � jjx � yjj2

ε0kðyÞ

� �α� �� �
;

where ε0kðxÞ
I

 are now computed via the k-th nearest neighbor of x in the batch 
containing y (and vice versa for ε0kðyÞ

I
). Next, a rescaling factor γxy is computed such 

that
X

z2batchðyÞ
γxyK

0
k;αðx; zÞ≤β

X

z2batchðxÞ
Kk;αðx; zÞ

for every x and y, where β > 0 is a user-configurable parameter. This factor gives 
rise to the rescaled kernel

K 0
k;α;βðx; yÞ ¼

K 0
k;αðx; yÞ if batch ðxÞ ¼ batch ðyÞ

γxyK
0
k;αðx; yÞ otherwise:

�

Finally, the full symmetric kernel is then computed as

K 0
k;αðx; yÞ ¼ K 0

k;αðy; xÞ ¼ min K 0
k;α;βðx; yÞ;K 0

k;α;βðy; xÞ
n o

;

and used to set the weight matrix for the constructed graph over the data. Note that 
this construction is a well-defined extension of Equation (4), as it reduces back to 
that kernel when only a single batch exists in the data.

We also perform an anisotropic density normalization transformation so that 
the kernel reflects the underlying geometry normalized by density, as in ref. 50. The 
density-normalized kernel Kq

k;α

I
 divides out by density, estimated by the sum of 

outgoing edge weights for each node as follows:

Kq
k;α ¼

K 0
k;αðx; yÞ

qðxÞqðyÞ ;

where

qðxÞ ¼
Z

X
K 0

k;αqðyÞdy:

We use this density-normalized kernel in all experiments. When the data  
are uniformly sampled from the manifold, then the density around each  
point is constant, and this normalization has no effect. When the density is 
non-uniformly sampled from the manifold, this allows an estimation of the 
underlying geometry unbiased by density. This is especially important when 
performing density estimation from empirical distributions with different 
underlying densities. By normalizing by density, we allow for construction of  
the manifold geometry from multiple differently distributed samples and 
individual density estimation for each of these densities on the same support.  
This normalization is further discussed below in the discussion of the relation 
between MELD and Gaussian KDE.

Estimating sample-associated density and relative likelihood on a graph. Density 
estimation is difficult in high dimensions because the number of samples  
needed to accurately reconstruct density with bounded error is exponential in 
the number of dimensions. Because general high-dimensional density  
estimation is an intrinsically difficult problem, additional assumptions must be 
made. A common assumption is that the data exist on a manifold of  
low intrinsic dimensionality in ambient space. Under this assumption, several 
works on graphs addressed density estimation limited to the support of the 
graph nodes51–55. Instead of estimating kernel density or histograms in D 
dimensions where D could be large, these methods render the data as a graph, 
and density is estimated at each point on the graph (each data point) as some 
variant counting the number of points, which lie within a radius of each point 
on the graph.

The MELD algorithm also estimates density of a signal on a graph. In the 
following sections, we use a generalization of the standard heat kernel on the 
graph to estimate signal density. We then draw analogs between the resulting 
sample-associated density estimate and Gaussian kernel density estimation on 
the manifold, showing that our density estimate with a specific parameter set is 
equivalent to the Gaussian density estimate on the graph.

GSP. The MELD algorithm leverages recent advances in GSP20, which aim to 
extend traditional signal processing tools from the spatiotemporal domain to 
the graph domain. Such extensions include, for example, wavelet transforms56, 
windowed Fourier transforms23 and uncertainty principles57. All of these extensions 
rely heavily on the fundamental analogy between classical Fourier transform 
and graph Fourier transform (GFT) (described in the next section) derived from 
eigenfunctions of the graph Laplacian, which are defined as

L :¼ D�W; ð5Þ

where D is the degree matrix, which is a diagonal matrix with Dii = d(i) = ∑jWij 
containing the degrees of the vertices of the graph defined by W.

The GFT. One of the fundamental tools in traditional signal processing is the 
Fourier transform, which extracts the frequency content of spatiotemporal 
signals58. Frequency information enables various insights into important 
characteristics of analyzed signals, such as pitch in audio signals or edges and 
textures in images. Common to all of these is the relation between frequency 
and notions of smoothness. Intuitively, a function is smooth if one is unlikely to 
encounter a dramatic change in value across neighboring points. A simple way to 
imagine this is to look at the zero-crossings of a function. Consider, for example, 
sine waves sin ax

I
 of various frequencies a ¼ 2k; k 2 N

I
. For k = 0, the wave crosses 

the x axis (a zero-crossing) when x = π. When we double the frequency at k = 1, our 
wave is now twice as likely to cross the zero and is, thus, less smooth than k = 0. 
This simple zero-crossing intuition for smoothness is relatively powerful, as we will 
see shortly.

Next, we show that our notions of smoothness and frequency are readily 
applicable to data that are not regularly structured, such as single-cell data. The 
graph Laplacian L can be considered as a graph analog of the Laplace (second 
derivative) operator ∇2 from multivariate calculus. This relation can be verified by 
deriving the graph Laplacian from first principles.
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For a graph G on N vertices, its graph Laplacian L and an arbitrary graph signal 
f 2 RN

I
, we use Equation (5) to write

L fð ÞðiÞ ¼ D�W½ fð ÞðiÞ
¼ dðiÞfðiÞ �P

jWijfðjÞ
¼

P
jWij fðiÞ � fðjÞð Þ:

ð6Þ

As the graph Laplacian is a weighted sum of differences of a function around 
a vertex, we may interpret it analogously to its continuous counterpart as the 
curvature of a graph signal. Another common interpretation made explicit by the 
derivation in Equation (6) is that ðLfÞðiÞ

I
 measures the local variation of a function 

at vertex i.
Local variation naturally leads to the notion of total variation,

TVðfÞ ¼
X

i;j

WijðfðiÞ � fðjÞÞ2;

which is effectively a sum of all local variations. TV(f) describes the global 
smoothness of the graph signal f. In this setting, the more smooth a function is, the 
lower the value of the variation. This quantity is more fundamentally known as the 
Laplacian quadratic form,

fTL f ¼
X

i;j
WijðfðiÞ � fðjÞÞ2: ð7Þ

Thus, the graph Laplacian can be used as an operator and in a quadratic form 
to measure the smoothness of a function defined over a graph. One effective tool 
for analyzing such operators is to examine their eigensystems. In our case, we 
consider the eigendecomposition L ¼ ΨΛΨ�1

I
, with eigenvalues. (Note that, in 

this discussion, we abuse notation by treating Λ as an ordered set of Laplacian 
eigenvalues and as the diagonal matrix with entries from the elements of this set. 
Similarly, Ψ is both the set of column eigenvectors fψ ig

N
i¼1

I
 as well as the N × N 

matrix ψ1ψ2   ψN½ 
I

 with eigenvector as a column.) Λ: = {0 = λ1≤λ2≤ ⋯ ≤λN} 
and corresponding eigenvectors Ψ :¼ fψ ig

N
i¼1

I
. As the Laplacian is a square and 

symmetric matrix, the spectral theorem tells us that its eigenvectors in Ψ form an 
orthonormal basis for RN

I
. Furthermore, the Courant–Fischer theorem establishes 

that the eigenvalues in Λ are local minima of fTLf
I

 when fTf = 1 and f ∈ U as 
dim(U) = i = 1, 2, …, N. At each eigenvalue λi, this function has f = ψi. In summary, 
the eigenvectors of the graph Laplacian (1) are an orthonormal basis and (2) 
minimize the Laplacian quadratic form for a given dimension.

Henceforth, we use the term ‘graph Fourier basis’ interchangeably with 
graph Laplacian eigenvectors, as this basis can be thought of as an extension of 
the classical Fourier modes to irregular domains20. In particular, the ring graph 
eigenbasis is composed of sinusoidal eigenvectors, as they converge to discrete 
Fourier modes in one dimension. The graph Fourier basis, thus, allows one to 
define the GFT by direct analogy to the classical Fourier transform.

The GFT of a signal f is given by f̂ ðλℓÞ ¼
P

i f ðiÞψT
ℓ ðiÞ ¼ hf ;ψℓi

I
, which can 

also be written as the matrix–vector product

f̂ ¼ ΨT f : ð8Þ

As this transformation is unitary, the inverse graph Fourier transform (IGFT) 
is f ¼ Ψf̂

I
. Although the graph setting presents a new set of challenges for signal 

processing, many classical signal processing notions, such as filterbanks and 
wavelets, have been extended to graphs using the GFT. We use the GFT to process, 
analyze and cluster experimental signals from single-cell data using a novel graph 
filter construction and a new harmonic clustering method.

The manifold heat filter. In the MELD algorithm, we seek to estimate the change in 
sample density between experimental labels along a manifold represented by a cell 
similarity graph. To estimate sample density along the graph, we employ a novel 
graph filter construction, which we explain in the following sections. To begin, 
we review the notion of filtering with focus on graphs and demonstrate manifold 
heat filter in a low-pass setting. Next, we demonstrate the expanded version of the 
manifold heat filter and provide an analysis of its parameters. Finally, we provide a 
simple solution to the manifold heat filter that allows fast computation.

Filters on graphs. Filters can be thought of as devices that alter the spectrum of 
their input. Filters can be used as bases, as is the case with wavelets, and they can 
be used to directly manipulate signals by changing the frequency response of the 
filter. For example, many audio devices contain an equalizer that allows one to 
change the amplitude of bass and treble frequencies. Simple equalizers can be built 
simply by using a set of filters called a filterbank. In the MELD algorithm, we use a 
tunable filter to estimate density of a sample indicator signal on a single-cell graph.

Mathematically, graph filters work analogously to classical filters. Specifically, a 
filter takes in a signal and attenuates it according to a frequency response function. 
This function accepts frequencies and returns a response coefficient. This is then 
multiplied by the input Fourier coefficient at the corresponding frequency. The 
entire filter operation is, thus, a reweighting of the input Fourier coefficients. 
In low-pass filters, the function only preserves frequency components below 

a threshold. Conversely, high-pass filters work by removing frequencies below 
a threshold. Band-pass filters transfer frequency components that are within a 
certain range of a central frequency. The tunable filter in the MELD algorithm is 
capable of producing any of these responses.

As graph harmonics are defined on the set Λ, it is common to define them 
as functions of the form h: [0, max(Λ)] ↦ [0, 1]. For example, a low-pass filter 
with cutoff at λk would have h(x) > 0 for x < λk and h(x) = 0 otherwise. By abuse 
of notation, we will refer to the diagonal matrix with the filter h applied to each 
Laplacian eigenvalue as h(Λ), although h is not a set-valued or matrix-valued 
function. Filtering a signal f is clearest in the spectral domain, where one simply 
takes the multiplication f̂ filt ¼ hðΛÞf̂ ¼ hðΛÞΨT f

I
.

Finally, it is worth using the above definitions to define a vertex-valued 
operator to perform filtering. As a graph filter is merely a reweighting of the graph 
Fourier basis, one can construct the filter matrix

H ¼ ΨhðΛÞΨT : ð9Þ

A manipulation using Equation (8) will verify that Hf is the windowed graph 
Fourier transform (WGFT) of f̂ filt

I
. This filter matrix will be used to solve the 

manifold heat filter in approximate form for computational efficiency.

Laplacian regularization. A simple assumption for density estimation is 
smoothness. In this model, the density estimate is assumed to have a low amount of 
neighbor-to-neighbor variation. Laplacian regularization59–67 is a simple technique 
that targets signal smoothness via the optimization

y ¼ argminzjjx � zjj22|fflfflfflfflffl{zfflfflfflfflffl}
a

þ βzTLz|fflffl{zfflffl}
b

: ð10Þ

Note that this optimization has two terms. The first term (a), called a 
reconstruction penalty, aims to keep the density estimate similar to the input 
sample information. The second term (b) ensures smoothness of the signal. 
Balancing these terms adjusts the amount of smoothness performed by the filter.

Laplacian regularization is a sub-problem of the manifold heat filter that we 
will discuss for low-pass filtering. In the above, a reconstruction penalty (a) is 
considered alongside the Laplacian quadratic form (b), which is weighted by the 
parameter β. The Laplacian quadratic form may also be considered as the norm of 
the graph gradient—that is,

βzTLz ¼ βjj∇Gzjj22:

Thus, one may view Laplacian regularization as a minimization of the edge 
derivatives of a function while preserving a reconstruction. Because of this form, 
this technique has been cast as Tikhonov regularization61,68, which is a common 
regularization to enforce a low-pass filter to solve inverse problems in regression. In 
our results, we demonstrate a manifold heat filter that may be reduced to Laplacian 
regularization using a squared Laplacian.

Above, we introduced filters as functions defined over the Laplacian 
eigenvalues (h(Λ)) or as vertex operators in Equation (9). Minimizing optimization 
in Equation (10) reveals a similar form for Laplacian regularization. Although 
Laplacian regularization filter is presented as an optimization, it also has a 
closed-form solution. We derive this solution here as it is a useful building block 
for understanding the sample-associated density estimate. To begin,

y ¼ arg min
z

jjx � zjj22 þ βzTLz

¼ arg min
z

ðx � zÞT ðx � zÞ þ βzTLz

¼ arg min
z

xTx þ zTz� 2xTzþ βzTLz

Substituting y = z, we next differentiate with respect to y and set this to 0:

0 ¼ ∇yðxTx þ yTy � 2yTx þ βyTLyÞ
¼ 2y � 2x þ 2βLy

x ¼ ðIþ βLÞy;

so the global minima of (10) can be expressed in closed form as

y ¼ ðIþ βLÞ�1x: ð11Þ

As the input x is a graph signal in the vertex domain, the least squares solution (11) 
is a filter matrix Hreg ¼ ðI þ βLÞ�1

I
 as discussed above. The spectral properties of 

Laplacian regularization immediately follow as

Hreg ¼ ðIþ βLÞ�1

¼ Ψ 1
1þβΛΨ

T :
ð12Þ

Thus, Laplacian regularization is a graph filter with frequency response 
hreg(λ) = (1+βλ)−1. Supplementary Fig. 13 shows that this function is a low-pass 
filter on the Laplacian eigenvalues with cutoff parameterized by β.
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Tunable filtering. Although simple low-pass filtering with Laplacian regularization 
is a powerful tool for many machine learning tasks, we sought to develop a filter 
that is flexible and capable of filtering the signal at any frequency. To accomplish 
these goals, we introduce the manifold heat filter:

y ¼ arg min
z

jjx � zjj22 þ zTLz ð13Þ

whereL ¼ expðβðL=λmax � αIÞρÞ � I

This filter expands upon Laplacian regularization by the addition of a new 
smoothness structure. Early and related work proposed the use of a power 
Laplacian smoothness matrix S in a similar manner as we apply here61, but little 
work has since proven its utility. In our construction, α is referred to as modulation, 
β acts as a reconstruction penalty and ρ is filter order. These parameters add a great 
deal of versatility to the manifold heat filter, and we demonstrate their spectral and 
vertex effects in Supplementary Fig. 13, as well as provide mathematical analysis of 
the MELD algorithm parameters in the following section.

A similar derivation as in Equation (11) reveals the filter matrix

HMELDðLÞ ¼ e�βðL=λmax�αIÞρ ; ð14Þ

which has the frequency response

hMELDðλÞ ¼ e�βðλ=λmax�αÞρ : ð15Þ

Thus, the value of the MELD algorithm parameters in the vertex optimization 
(Equation (13)) has a direct effect on the graph Fourier domain.

Parameter analysis. β steepens the cutoff of the filter and shifts it more toward its 
central frequency (Supplementary Fig. 13). In the case of α = 0, this frequency is 
λ1 = 0. This is done by scaling all frequencies by a factor of β. For stability reasons, 
we choose β > 0, as a negative choice of β yields a high-frequency amplifier.

The parameters α and ρ change the filter from low pass to band pass or 
high pass. Supplementary Fig. 13 highlights the effect on frequency response of 
the filters and showcases their vertex effects in simple examples. We begin our 
mathematical analysis with the effects of ρ.

ρ powers the Laplacian harmonics. This steepens the frequency response 
around the central frequency of the manifold heat filter. Higher values of ρ lead  
to sharper tails (Supplementary Fig. 13d,e), limiting the frequency response  
outside of the target band but with increased response within the band. 
Finally, ρ can be used to make a high-pass filter by setting it to negative values 
(Supplementary Fig. 13f).

For the integer powers, a basic vertex interpretation of ρ is available. Each 
column of Lk

I
 is k − hoplocalized, meaning that Lk

ij

I
 is non-zero if and only if the 

there exists a path length k between vertex i and vertex j (for a detailed discussion 
of this property, see ref. 56, Section 5.2.) Thus, for ρ 2 N

I
, the operator Lρ

I
 considers 

variation over a hop distance of ρ. This naturally leads to the spectral behavior that 
we demonstrate in Supplementary Fig. 13d, as signals are required to be smooth 
over longer hop distances when α = 0 and ρ > 1.

The parameter α removes values from the diagonal of L. This results in a 
modulation of frequency response by translating the Laplacian harmonic that 
yields the minimal value for the problem (Equation (13)). This allows one to 
change the central frequency, as α effectively modulates a band-pass filter. As graph 
frequencies are positive, we do not consider α < 0. In the vertex domain, the effect 
of α is more nuanced. We study this parameter for α > 0 by considering a modified 
Laplacian L

I
 with ρ = 1.

To conclude, we propose a filter parameterized by reconstruction β 
(Supplementary Fig. 13), order ρ and modulation α. The parameters α and β are 
limited to be strictly greater than or equal to 0. When α = 0, ρ may be any integer, 
and it adds more low frequencies to the frequency response as it becomes more 
positive. On the other hand, if ρ is negative and α = 0, ρ controls a high-pass filter. 
When α > 0, the manifold heat filter becomes a band-pass filter. In standard use 
cases, we propose to use the parameters α = 0, β = 60 and ρ = 1. Other parameter 
values are explored further in Supplementary Fig. 13. We note that the results 
are relatively robust to parameter values around this default setting. All of 
our biological results were obtained using this parameter set, which gives a 
square-integrable low-pass filter. As these parameters have direct spectral effects, 
their implementation in an efficient graph filter is straightforward and presented 
below.

In contrast to previous works using Laplacian filters, our parameters allow 
analysis of signals that are combinations of several underlying changes occurring 
at various frequencies. For an intuitive example, consider that the frequency 
of various Google searches will vary from winter to summer (low-frequency 
variation), Saturday to Monday (medium-frequency variation) or morning to night 
(high-frequency variation). In the biological context, such changes could manifest 
as differences in cell type abundance (low-frequency variation) and cell cycle 
(medium-frequency variation)69. We illustrate such an example in Supplementary 
Fig. 13 by blindly separating a medium-frequency signal from a low-frequency 
contaminating signal over simulated data. Such a technique could be used to 

separate low- and medium-frequency components so that they can be analyzed 
independently.

Relation between MELD and the Gaussian KDE through the heat kernel. KDEs 
are widely used as estimating density is one of the fundamental tasks in many 
data applications. The density estimate is normally done in ambient space, and 
there are many methods to do so with a variety of advantages and disadvantages 
depending on the application. We, instead, assume that the data are sampled from 
some low-dimensional subspace of the ambient space—for example, that the data 
lie along a manifold. The MELD algorithm can be thought of as a Gaussian KDE 
over the discrete manifold formed by the data. This gives a density estimate at 
every sampled point for a number of distributions. This density estimate, as the 
number of samples goes to infinity, should converge to the density estimate along 
a continuous manifold formed by the data. The case of data uniformly sampled 
on the manifold was explored in ref. 70, proving convergence of the eigenvectors 
and eigenvalues of the discrete Laplacian to the eigenfunctions of the continuous 
manifold. Reference 71 explored when the data are non-uniformly sampled from 
the manifold and provided a kernel that can normalize out this density that results 
in a Laplacian modeling the underlying manifold geometry, irrespective of data 
density. Building on these two works, MELD allows us to estimate the manifold 
geometry using multiple samples with unknown distribution along it and estimate 
density and conditional density for each distribution on this shared manifold.

A general KDE f(x, t) with bandwidth t > 0 and kernel function K(x, y, t) is 
defined as

f̂ ðx; tÞ ¼ 1
N

XN

i¼1

Kðx;Xi; tÞ; x 2 X ð16Þ

With X :¼ Rd

I
, and endowed with the Gaussian kernel

Kðx; y; tÞ ¼ 1

ð4πtÞd=2
e� jx�yj jj22=4t ; ð17Þ

we have the Gaussian KDE in Rd

I
.

This kernel is of particular interest for its thermodynamic interpretation. 
Namely, the Gaussian KDE is a space discretization of the unique solution to the 
heat diffusion partial differential equation (PDE)21,72:

∂

∂t
f̂ ðx; tÞ ¼ 1

2
∂
2

∂x2
f̂ ðx; tÞ; x 2 X ; t>0; ð18Þ

with f̂ ðx; 0Þ ¼ 1
N

Pn
i¼1 δXi

I
 where δx is the Dirac measure at x. This is sometimes 

called Green’s function for the diffusion equation. Intuitively, f̂ ðx; tÞ
I

 can be thought 
of as measuring the heat after time t after placing units of heat on the data points 
at t = 0.

In fact, the Gaussian kernel can be represented, instead, in terms of the 
eigenfunctions of the ambient space. With eigenfunctions ϕ and eigenvalues λ, the 
Gaussian kernel can be alternative expressed as

Kðx; y; tÞ ¼
X1

n¼0
e�tλnϕnðxÞϕnðyÞ ð19Þ

Of course, for computational reasons, we often prefer the closed-form solution 
in (17). We now consider the case when X

I
 instead consists of uniform samples 

from a Riemannian manifold M
I

 embedded in Rd

I
, such that X  M  Rd

I
. 

An analog to the Gaussian KDE in Rd

I
 on a manifold is then the solution to the 

heat PDE restricted to the manifold, and, again, we can use the eigenfunction 
interpretation of the Green’s function in (19), except replacing the eigenfunctions 
of the manifold.

The eigenfunctions of the manifold can be approximated through the 
eigenvectors of the discrete Laplacian. The solution of the heat equation on a graph 
is defined in terms of the discrete Laplacian L ¼ ΨΛΨ�1

I
 as

K̂Lðx; y; tÞ ¼ δxe
�tLδy ¼ δxΨe

�tΛΨ�1δy ð20Þ

where δx, δy are Dirac functions at x and y, respectively. This is equivalent to MELD 
when β = tλmax, α = 0 and ϕ = 1.

When data X
I
 are sampled uniformly from the manifold M

I
 and the standard 

Gaussian kernel is used to construct the graph, then Theorem 2.1 of ref. 70, which 
proves the convergence of the eigenvalues of the discrete graph Laplacian to the 
continuous Laplacian and implies (20), converges to the Gaussian KDE on the 
manifold.

However, real data are rarely uniformly sampled from a manifold. When the 
data are, instead, sampled from a smooth density X  qðxÞ

I
 over the manifold, 

then the density must be normalized out to recover the geometry of the manifold. 
This problem was first tackled in ref. 50 by constructing an anisotropic kernel that 
divides out the density at every point. This correction allows us to estimate density 
over the underlying geometry of the manifold even in the case where data are not 
uniformly sampled. This allows us to use samples from multiple distributions, 
in our case distributions over cellular states, which allows a better estimate of 
underlying manifold using all available data.
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In practice, we combine two methods to construct a discrete Laplacian that 
reflects the underlying data geometry over which we estimate heat propagation 
and perform density estimation, as explained above in the discussion of graph 
construction.

Implementation. A naive implementation of the MELD algorithm would apply 
the matrix inversion presented in Equation (14). This approach is untenable for 
the large single-cell graphs that the MELD algorithm is designed for, as H�1

MELD
I

 
will have many elements and, for high powers of ρ or non-sparse graphs, be 
extremely dense. A second approach to solving Equation (13) would diagonalize 
L such that the filter function in Equation (15) could be applied directly to the 
Fourier transform of input raw experimental signals. This approach has similar 
shortcomings as eigendecomposition is substantively similar to inversion. Finally, 
a speedier approach might be to use conjugate gradient or proximal methods. 
In practice, we found that these methods are not well suited for estimating 
sample-associated density.

Instead of gradient methods, we use Chebyshev polynomial approximations 
of hMELD(λ) to rapidly approximate and apply the manifold heat filter. These 
approximations, proposed in ref. 56 and ref. 22, have gained traction in the GSP 
community for their efficiency and simplicity. Briefly, a truncated and shifted 
Chebyshev polynomial approximation is fit to the frequency response of a graph 
filter. For analysis, the approximating polynomials are applied as polynomials of 
the Laplacian multiplied by the signal to be filtered. As Chebyshev polynomials 
are given by a recurrence relation, the approximation procedure reduces to a 
computationally efficient series of matrix–vector multiplications. For a more 
detailed treatment, one may refer to ref. 56 where the polynomials are proposed 
for graph filters. For application of the manifold heat filter to a small set of input 
sample indicator signals, Chebyshev approximations offer the simplest and most 
efficient implementation of our proposed algorithm. For sufficiently large sets of 
samples, such as when considering hundreds of conditions, the computational 
cost of obtaining the Fourier basis directly might be less than repeated application 
of the approximation operator; in these cases, we diagonalize the Laplacian either 
approximately through randomized singular value decomposition or exactly using 
eigendecomposition, depending on user preference. Then, one simply constructs 
HMELD = ΨhMELD(Λ)ΨT to calculate the sample-associated density estimate from the 
input sample indicator signals.

Summary of the MELD algorithm. In summary, we have proposed a family of 
graph filters based on a generalization of Laplacian regularization framework to 
implement the computation of sample-associated density estimates on a graph. 
This optimization, which can be solved analytically, allows us to derive the relative 
likelihood of each sample in a dataset as a smooth and de-noised signal, while also 
respecting multi-resolution changes in the likelihood landscape. As we show in 
our quantitative comparisons, this formulation performs better at deriving the true 
conditional likelihood in quantitative comparisons than simpler label-smoothing 
algorithms. Furthermore, the MELD algorithm is efficient to compute.

The MELD algorithm is implemented in Python 3 as part of the MELD 
package and is built atop the scprep, graphtools and pygsp packages. We 
developed scprep to efficiently process single-cell data, and graphtools was 
developed for construction and manipulation of graphs built on data. Fourier 
analysis and Chebyshev approximations are implemented using functions from the 
pygsp toolbox73.

VFC. Next, we will describe the VFC algorithm for partitioning the cellular 
manifold into regions of similar response to experimental perturbation. For this 
purpose, we use a technique proposed in ref. 23 based on a graph generalization 
of the classical short-time Fourier transform. This generalization will allow 
us to simultaneously localize signals in both frequency and vertex domains. 
The output of this transform will be a spectrogram Q, where the value in each 
entry Qi,j indicates the degree to which each sample indicator signal in the 
neighborhood around vertex i is composed of frequency j. We then concatenate 
the sample-associated relative likelihood and perform k-means clustering. The 
resultant clusters will have similar transcriptomic profiles, similar likelihood 
estimates and similar frequency trends of the sample indicator signals. The 
frequency trends of the sample indicator signals are important because they allow 
us to infer movements in the cellular state space that occur during experimental 
perturbation.

We derive VFCs in the following steps:

	1.	 We create the cell graph in the same way as is done for the MELD algorithm.
	2.	 For each vertex in the graph (corresponding to a cell in the data), we create a 

series of localized windowed signals by masking the sample indicator signal 
using a series of heat kernels centered at the vertex. Graph Fourier decompo-
sition of these localized windows capture frequency of the sample indicator 
signal at different scales around each vertex.

	3.	 The graph Fourier representation of the localized windowed signals is thresh-
olded using a tanh activation function to produce pseudo-binary signals.

	4.	 These pseudo-binarized signals are summed across windows of various scales 
to produce a single N × N spectrogram Q. Principal component analysis 
(PCA) is performed on the spectrogram for dimensionality reduction.

	5.	 The sample-associated relative likelihood is concatenated to the reduced spec-
trogram weighted by the L2-norm of PC1 to produce Q̂, which captures both 
local sample indicator frequency trends and changes in conditional density 
around each cell in both datasets.

	6.	 k-means is performed on the concatenated matrix to produce VFCs.

Analyzing frequency content of the sample indicator signal. Before we go into 
further detail about the algorithm, it might be useful to provide some intuitive 
explanations for why the frequency content of the sample indicator signal 
provides a useful basis for identifying clusters of cells affected by an experimental 
perturbation. Because the low-frequency eigenvectors of the graph Laplacian 
identify smoothly varying axes of variance through a graph, we associate trends 
in the sample indicator signal associated with these low-frequency eigenvectors 
as biological transitions between cell states. This might correspond to the shift 
in T cells from naive to activated, for example. We note that, at intermediate cell 
transcriptomic states between the extreme states that are most enriched in either 
condition, we observe both low- and middle-frequency sample indicator signal 
components; see the blue cell in the cartoon in Fig. 2a. This is because, locally, the 
sample indicator signal varies from cell to cell but, on a large scale, is varying from 
enriched in one condition to being enriched in the other. This is distinct from 
what we observe in our model when a group of cells is completely unaffected by an 
experimental perturbation. Here, we expect to find only high-frequency variations 
in the sample indicator signal and no underlying transition or low-frequency 
component. The goal of VFC is to distinguish between these four cases: enriched 
in the experiment, enriched in the control, intermediate transitional states and 
unaffected populations of cells. We also want these clusters to have variable size so 
that even small groups of cells that might be differentially abundant are captured in 
our clusters.

Using the WGFT to identify local changes in sample indicator signal frequency. 
Although the GFT is useful for exploring the frequency content of a signal, it is 
unable to identify how the frequency content of graph signals change locally over 
different regions of the graph. In VFC, we are interested in understanding how the 
frequency content of the sample indicator signal changes in neighborhoods around 
each cell. In the time domain, the windowed Fourier transform (WFT) identifies 
changing frequency composition of a signal over time by taking slices of the signal 
(for example, a sliding window of 10 s) and applying a Fourier decomposition to 
each window independently58. The result is a spectrogram Q, where the value in 
each cell Qi,j indicates the degree to which time slice i is composed of frequency 
j. Recent works in GSP have generalized the construction of WFT to graph 
signals23. To extend the notion of a sliding window to the graph domain,23 write the 
operation of translation in terms of convolution as follows.

The generalized translation operatorTi : R
N ! RN

I
 of signal f to vertex 

i ∈ {1, 2, . . . , N} is given by

ðTif ÞðnÞ :¼
ffiffiffiffi
N

p
ðf  δiÞðnÞ; δiðjÞ ¼

1 j ¼ i

0 j≠i


ð21Þ

which convolves the signal f, in our case the sample indicator signal, with a  
Dirac at vertex i. Reference 23 demonstrates that this operator inherits various 
properties of its classical counterpart; however, the operator is not isometric  
and is affected by the graph that it is built on. Furthermore, for signals that are not 
tightly localized in the vertex domain and on graphs that are not directly related 
to Fourier harmonics (for example, the circle graph), it is not clear what graph 
translation implies.

In addition to translation, a generalized modulation operator is defined in ref. 23 
as Mk : R

N ! RN

I
 for frequencies k ∈ {0, 1, . . . , N − 1} as

ðMkf ÞðnÞ :¼
ffiffiffiffi
N

p
f ðnÞUkðnÞ ð22Þ

This formulation is analogous in construction to classical modulation, defined by 
point-wise multiplication with a pure harmonic—a Laplacian eigenvector in our 
case. Classical modulation translates signals in the Fourier domain; because of the 
discrete nature of the graph Fourier domain, this property is only weakly shared 
between the two operators. Instead, the generalized modulation Mk translates the 
DC component of f, f̂ ð0Þ

I
, to λk—that is, dðMkfÞðλkÞ ¼ f̂ ð0Þ

I
. Furthermore, for any 

function f whose frequency content is localized around λ0, (Mkf) is localized in 
frequency around λk. Reference 23 details this construction and provides bounds on 
spectral localization and other properties.

With these two operators, a graph windowed Fourier atom is constructed23 for 
any window function g 2 RN

I
:

gi;kðnÞ :¼ ðMkTigÞðnÞ ¼ NUkðnÞ
XN�1

ℓ¼0
ĝðλℓÞU

ℓðiÞUℓðnÞ: ð23Þ

We can then build a spectrogram Q ¼ ðqikÞ 2 RN ´N

I
 by taking the inner product of 

each gi,k ∀ i ∈ {1, 2, . . . , N} ∧ ∀ k ∈ {0, 1, . . . , N − 1} with the target signal f:

qik ¼ Sf ði; kÞ :¼ hf ; gi;ki: ð24Þ
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As with the classical WFT, one could interpret this as segmenting the signal by 
windows and then taking the Fourier transform of each segment:

qi ¼ hðTig  f Þ;Ui ð25Þ

where ⊙ is the element-wise product.

Using heat kernels of increasing scales to produce the WGFT of the sample indicator 
signal. To generate the spectrogram for clustering, we first need a suitable window 
function. We use the normalized heat kernel as proposed in ref. 23:

ĝðλÞ ¼ Ce�tλ; ð26Þ

C ¼ jjgjj�1
2 : ð27Þ

By translating this kernel, element-wise multiplying it with our target signal f and 
taking the Fourier transform of the result, we obtain a WGFT of f that is localized 
based on the diffusion distance23,57 from each vertex to every other vertex in the graph.

For an input sample indicator signal f, signal-biased spectral clustering as 
proposed in ref. 23 proceeds as follows:

	1.	 Generate the window matrix Pt, which contains, as its columns, translated 
and normalized heat kernels at the scale t.

	2.	 Column-wise multiply Ft = P ⊙ f; the i-th column of Ft is an entry-wise prod-
uct of the i-th window and f.

	3.	 Take the Fourier transform of each column of Ft. This matrix, Ĉt
I

, is the nor-
malized WGFT matrix.

This produces a single WGFT for the scale t. At this stage, ref. 23 proposed to 
saturate the elements of Ĉt

I
 using the activation function tanh ðjĈtjÞ

I
 (where ∣ . ∣ is 

an element-wise absolute value). Then, k-means is performed on this saturated 
output to yield clusters. This operation has connections to spectral clustering as the 
features that k-means is run on are coefficients of graph harmonics.

We build upon this approach to add robustness, sensitivity to sign changes 
and scalability. Particularly, VFC builds a set of activated spectrograms at different 
window scales. These scales are given by simulated heat diffusion over the graph 
by adjusting the time scale t in Equation (26). Then, the entire set is combined 
through summation.

Combining the sample-associated relative likelihood and WGFT of the sample 
indicator signal. As discussed in the introduction of VFC in the Results, it is 
useful to consider the value of the sample likelihood in addition to the frequency 
content of the sample indicator. This is because, if we consider two populations of 
cells, one of which is highly enriched in the experimental condition and another 
that is enriched in the control, we expect to find similar frequency content of the 
sample indicator signal. Namely, both should have very low-frequency content, as 
indicated in the cartoon in Fig. 2a. However, we expect these two populations to 
have very different sample likelihood values. To allow us to distinguish between 
these populations, we also include the sample-associated relative likelihood in the 
matrix used for clustering.

We concatenate the sample-associated relative likelihood as an additional 
column to the multi-resolution spectrogram Q. However, we want to be able to 
tune the clustering with respect to how much the likelihood affects the result 
compared to the frequency information in Q. Therefore, inspired by spectral 
clustering as proposed in ref. 74, we first perform PCA on Q to get k + 1 principle 
components and then normalize the likelihood by the L2-norm of the first 
principle component. We then add the likelihood as an additional column to the 
PCA-reduced Q to produce the matrix Q̂. The weight of the likelihood can be 
modulated by a user-adjustable parameter w, but, for all experiments in this paper, 
we leave w = 1. Finally, Q̂ is used as input for k-means clustering.

The multi-scale approach that we have proposed has several benefits. Foremost, 
it removes the complexity of picking a window size. Second, using the actual 
input signal as a feature allows the clustering to consider both frequency and sign 
information in the raw experimental signal. For scalability, we leverage the fact that 
Pt is effectively a diffusion operator and, thus, can be built efficiently by treating it 
as a Markov matrix and normalizing the graph adjacency by the degree.

Summary of the VFC algorithm. To identify clusters of cells that are 
transcriptionally similar and also affected by an experimental perturbation in 
the same way, we introduced an algorithm called VFC. Our approach builds 
upon previous work23 analyzing the local frequency content of the sample 
indicator vector as defined over the vertices of a graph. Here, we introduce two 
novel adaptations of the algorithm. First, we take a multi-resolution approach 
to quantifying frequency trends in the neighborhoods around each node. By 
considering windowed signals that are large (that is, contain many neighboring 
points) and small (that is, very proximal on the graph), we can identify clusters 
both large and small that are similarly affected by an experimental perturbation. 
Our second contribution is the inclusion of the relative likelihood of each sample 
in our basis for clustering. This allows VFC to take into account the degree of 
enrichment of each group of cells between condition.

Parameter search for the MELD algorithm. To determine the optimal set of 
parameters for the MELD algorithm, we performed a parameter search using 
Splatter-generated datasets. For each of the four dataset structures, we generated 
ten datasets with different random seeds and ten random ground truth probability 
densities per dataset, for a total of 400 datasets per combination of parameters. 
A coarse-grained grid search revealed that setting α = 0 and ρ = 1 performed best 
regardless of the β parameter. This is expected because, with these settings, the 
MELD filter is the standard heat kernel. A fine-grained search over parameters for 
β showed that optimal values were between 50 and 75 (Supplementary Fig. 14). 
We chose a value of 60 as the default in the MELD toolkit, and this was used for all 
experiments. We note that the optimal β parameter will vary with dataset structure 
and the number of cells. Supplementary Fig. 14b shows how the optimal β values 
vary as a function of the number of cells generated using Splatter while keeping the 
underlying geometry the same.

Processing and analysis of the T cell datasets. Gene expression counts matrices 
prepared in ref. 13 were accessed from the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO) database accession 
GSE92872. In total, 3,143 stimulated and 2,597 unstimulated T cells were processed 
in a pipeline derived from the published supplementary software. First, artificial 
genes corresponding to gRNAs were removed from the counts matrix. Genes 
observed in fewer than five cells were removed. Cells with a library size higher than 
35,000 UMIs per cell were removed. To filter dead or dying cells, expression of all 
mitochondrial genes was Z-scored, and cells with an average Z-score expression 
greater than 1 were removed. As in the published analysis, all mitochondrial 
and ribosomal genes were excluded. Filtered cells and genes were library size 
normalized and square root transformed. To build a cell state graph, 100 PCA 
dimensions were calculated, and edge weights between cells were calculated using 
an alpha decay kernel as implemented in the graphtools library (www.github.
com/KrishnaswamyLab/graphtools) using default parameters. MELD was run 
on the cell state graph using the stimulated/unstimulated labels as input with 
the smoothing parameter β = 60. To identify a signature, the top and bottom 
VFC clusters by sample-associated relative likelihood were used for differential 
expression using a rank test as implemented in diffxpy27 and a q-value cutoff of 
0.05. GO term enrichment was performed using EnrichR using the gseapy Python 
package (https://pypi.org/project/gseapy/).

Processing and analysis of the zebrafish dataset. Gene expression counts 
matrices prepared in ref. 15 (the chordin dataset) were downloaded from NCBI 
GEO (GSE112294). In total, 16,079 cells from chd embryos injected with gRNAs 
targeting chordin and 10,782 cells from tyr embryos injected with gRNAs 
targeting tyrosinase were accessed. Lowly expressed genes detected in fewer 
than five cells were removed. Cells with library sizes larger than 15,000 UMIs 
per cell were removed. Counts were library size normalized and square root 
transformed. Cluster labels included with the counts matrices were used for cell 
type identification.

During preliminary analysis, a group of 24 cells were identified originating 
exclusively from the chd embryos. Despite an average library size in the bottom 
12% of cells, these cells exhibited 546-fold, 246-fold and 1,210-fold increased 
expression of Sh3Tc1, LOC101882117 and LOC101885394, respectively, relative 
to other cells. To our knowledge, the function of these genes in development 
is not described. These cells were annotated in ref. 15 as belonging to seven cell 
types, including the Tailbud–Spinal Cord and Neural–Midbrain. These cells were 
excluded from further analysis.

To generate a cell state graph, 100 PCA dimensions were calculated from 
the square root-transformed filtered gene expression matrix of both datasets. 
Edge weights between cells on the graph were calculated using an alpha decay 
kernel with parameters KNN = 20 and decay = 40. MAGIC was used to impute 
gene expression values using default parameters. MELD was run using the tyr 
or chd labels as input. The sample-associated density estimate was calculated for 
each of the six samples independently and normalized per replicate to generate 
three chordin-relative likelihood estimates. The average likelihood for the 
chordin condition was calculated and used for downstream analysis. To identify 
subpopulations within the published clusters, we manually examined a PHATE 
embedding of each subcluster, the distribution of chordin likelihood values in each 
cluster and the results of VFC subclustering with varying numbers of clusters. The 
decision to apply VFC was done on a per-cluster basis with the goal of identifying 
cell subpopulations with transcriptional similarity (as assessed by visualization) 
and uniform response to perturbation (as assessed by likelihood values). Cell 
types were annotated using sets of marker genes curated in ref. 16. Changes in 
gene expression between VFC clusters were assessed using a rank sum test as 
implemented by diffxpy.

Generation, processing and analysis of the pancreatic islet datasets. scRNA-seq 
was performed on human islet cells from three different islet donors in the 
presence and absence of IFN-γ. The islets were received on three different days. 
Cells were cultured for 24 h with 25 ng ml−1 of IFN-γ (R&D Systems) in CMRL 
1066 medium (Gibco) and subsequently dissociated into single cells with 0.05% 
Trypsin EDTA (Gibco). Cells were then stained with FluoZin-3 (Invitrogen) and 
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TMRE (Life Technologies) and sorted using an FACS Aria II (BD). The three 
samples were pooled for the sequencing. Cells were immediately processed using 
the 10× Genomics Chromium 3′ Single Cell RNA sequencing kit at the Yale 
Center for Genome Analysis. The raw sequencing data were processed using 
the 10× Genomics Cell Ranger Pipeline. Raw data will be made available before 
publication.

Data from all three donors were concatenated into a single matrix for analysis. 
First, cells not expressing insulin, somatostatin or glucagon were excluded from 
analysis using donor-specific thresholds. The data were square root transformed 
and reduced to 100 PCA dimensions. Next, we applied an MNN kernel to create 
a graph across all three donors with parameters KNN = 5 and decay = 30. This 
graph was then used for PHATE. MELD was run on the sample labels using default 
parameters. To identify coarse-grained cell types, we used previously published 
markers of islet cells35. We then used VFC to identify subpopulations of stimulated 
and unstimulated islet cells. To identify signature genes of IFN-γ stimulation, 
we calculated differential expression between the clusters with the highest and 
lowest treatment likelihood values within each cell type using a rank sum test as 
implemented in diffxpy. A consensus signature was then obtained by taking the 
intersection genes with q values < 0.05. Gene set enrichment was then calculated 
using gseapy.

Quantitative comparisons. To generate single-cell data for the quantitative 
comparisons, we used Splatter. Datasets were all generated using the ‘Paths’ mode 
so that a latent dimension in the data could be used to create the ground truth 
likelihood that each cell would be observed in the ‘experimental’ condition relative 
to the ‘control’. We focused on four data geometries: a tree with three branches, 
a branch and cluster with either end of the branch enriched or depleted and 
the cluster unaffected, a single branch with a middle section either enriched or 
depleted and four clusters with random segments enriched or depleted. To create 
clusters, a multi-branched tree was created, and all but the tips of the branches 
were removed. The ground truth experimental signal was created using custom 
Python scripts, taking the ‘Steps’ latent variable from Splatter and randomly 
selecting a proportion of each branch or cluster between 10% and 80% of the 
data to be enriched or depleted by 25%. These regions were divided into thirds to 
create a smooth transition between the unaffected regions and the differentially 
abundant regions. This likelihood ratio was then centered so that, on average, half 
the cells would be assigned to each condition. The centered ground truth signal 
was used to parameterize a Bernoulli random variable and assign each cell to the 
experimental or control conditions. The data and sample labels were used as input 
to the respective algorithms.

To quantify the accuracy of MELD to approximate the ground truth likelihood 
ratio, we compared MELD, a KNN-smoothed signal or a graph averaged signal to 
the ground truth likelihood of observing each cell in either of the two conditions. 
We used the Pearson’s R statistic to calculate the degree to which these estimates 
approximate the likelihood ratio. Each of the four data geometries was tested 30 
times with different random seeds.

We also performed MELD comparisons using the T cell and zebrafish datasets 
described above. The pre-processed data were used to generate a three-dimensional 
PHATE embedding that was Z-score normalized. We then used a combination 
of PHATE dimensions to create a ground truth probability that each cell would 
be observed in the experimental or control condition. Cells were then assigned 
to either condition based on this probability as described above. We ran the same 
comparisons as on the simulated data with 100 random seeds per dataset.

To quantify the accuracy of VFC to detect the regions of the dataset that were 
enriched, depleted or unaffected between conditions, we calculated the adjusted 
Rand score (ARS) between the ground truth regions with enriched, depleted or 
unchanged likelihood ratios between conditions. VFC was compared to k-means, 
spectral clustering, Louvain, Leiden and CellHarmony. As Leiden and Louvain 
do not provide a method to control the number of clusters, we implemented a 
binary search to identify a resolution parameter that provides the target number 
of clusters. Although CellHarmony relies on an initial Louvain clustering, the tool 
does not implement Louvain with a tuneable resolution. It is also not possible to 
provide an initial clustering to CellHarmony, so we resorted to cutting Louvain at 
the level closest to our target number of clusters. Finally, because CellHarmony 
does not reconcile the disparate cluster assignments in the reference and query 
datasets, and because not all cells in the query dataset may be aligned to the 
reference, we needed to generate manually new cluster labels for cells in the query 
dataset so that the method could be compared to other clustering tools.

To characterize the ability of MELD to characterize gene signatures of a 
perturbation dataset, we returned to the T cell dataset. We, again, used the same 
setup to create synthetically three regions with different sampling probabilities 
in the dataset using PHATE clusters as above. Because one of these clusters has 
no differential abundance between conditions, we calculated the ground truth 
gene expression signature between the enriched and depleted clusters only using 
diffxpy27. To calculate the gene signature for each clustering method, we performed 
differential expression between the most enriched cluster in the experimental 
condition and the most depleted cluster in the experimental condition (or 
highest and lowest treatment likelihood for MELD). We also considered directly 
performing two-sample comparison using the sample labels. To quantify the 

performance of each method, we used the area under the receiving operating 
characteristic curve (AUC-ROC) to compare the q values produced using each 
method to the ground truth q values. This process was repeated over 100 random 
seeds. The AUC-ROCs and performance of each method relative to VFC are 
displayed in Supplementary Fig. 6d,e.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Gene expression counts matrices prepared in ref. 13 were accessed from NCBI GEO 
database accession GSE92872. Gene expression counts matrices prepared in ref. 15  
were downloaded from NCBI GEO accession GSE112294. The pancreatic islets 
datasets are available on NCBI GEO at accession GSE161465.

Code availability
Code for the MELD and VFC algorithms implemented in Python is available as 
part of the MELD package on GitHub (https://github.com/KrishnaswamyLab/
MELD) and on the Python Package Index. The GitHub repository also contains 
tutorials, code to reproduce the analysis of the zebrafish dataset and code 
associated with several of the quantitative comparisons.
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