
S4 gating-charge residue is appropriatelymutated
to a smaller, polar, uncharged residue (37, 44, 45).
Such mutation of ShakerR1 to histidine or serine
permits H+ or alkali cation and guanidinium cur-
rents (38, 46).

We introduced an R2Ser mutation (37) into
the resting-state conformation (R2 to R4 down)
(18, 38). The mutant VSD exhibited significant
inward K+ current (no Cl− current) (movie S8,
table S2, and fig. S5). This current arises because
apposition of Phe233 with the mutated residue,
which lacks the large, positive guanidinium group
of the gating-charge residues, leads to increased
hydration of the VSD hydrophobic constriction
and thereby permits permeation of cations (Fig. 4,
B and C). Depolarization halted the current and
transferred ~2 e of gating charge (table S2).

The transition into the resting state, as well as
the conformation of the state itself, demonstrates
that the VSD omega and gating-permeation path-
ways are one and the same. Mutation of gating-
charge residues enables pathological cation leaks
through the VSD along the identical pathway
taken by the physiological gating-charge guani-
dinium groups. We thus provide a structural ex-
planation for hyperpolarization-induced (as well
as depolarization-induced) cationic leak currents
associated with channelopathies in certain human
voltage-gated ion channels.
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Ribosome Profiling Shows That
miR-430 Reduces Translation Before
Causing mRNA Decay in Zebrafish
Ariel A. Bazzini,1* Miler T. Lee,1* Antonio J. Giraldez1,2†

MicroRNAs regulate gene expression through deadenylation, repression, and messenger RNA
(mRNA) decay. However, the contribution of each mechanism in non-steady-state situations
remains unclear. We monitored the impact of miR-430 on ribosome occupancy of endogenous
mRNAs in wild-type and dicer mutant zebrafish embryos and found that miR-430 reduces the
number of ribosomes on target mRNAs before causing mRNA decay. Translational repression occurs
before complete deadenylation, and disrupting deadenylation with use of an internal polyadenylate
tail did not block target repression. Lastly, we observed that ribosome density along the length
of the message remains constant, suggesting that translational repression occurs by reducing
the rate of initiation rather than affecting elongation or causing ribosomal drop-off. These
results show that miR-430 regulates translation initiation before inducing mRNA decay during
zebrafish development.

MicroRNAs (miRNAs) control multi-
ple processes, including development,
physiology, and disease. These ~22-

nucleotide (nt) RNAs regulate gene expression
through translational repression and mRNA de-

adenylation and decay. The contribution and
timing of these effects remain unclear (1, 2). Al-
though some studies show translational repres-
sion without mRNA decay (3–7), others point
to decay as a primary effect (8–11). Ribosome-

profiling experiments, which quantify the num-
ber of ribosomes bound to a message (12), and
polysome profiling (13) have suggested that the
main effect of miRNAs is to accelerate decay,
with only a minor (8) or moderate (13) contribu-
tion from translational repression. This disparity
may stem from the steady-state conditions used
to assess the molecular effects of miRNAs, result-
ing in insufficient temporal resolution to identify
the first step in miRNA-mediated repression (2).

To dissect the temporal effects of miRNA-
mediated regulation and to distinguish between
translational repression andmRNAdecay,we have
analyzed the ribosome profiles and RNA levels
of endogenous messages in zebrafish embryos
(fig. S1) (14). At the onset of zygotic transcrip-
tion, zebrafish express a predominant miRNA
(miR-430) that facilitates clearance of maternal
mRNAs (15, 16) (Fig. 1, A and B). By com-
paring the ribosome profile of wild-type embryos
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withmaternal and zygotic dicermutants (MZdicer)
before [2 hours postfertilization (hpf)] and after
(4 and 6 hpf ) miR-430 expression (fig. S1), we
can analyze the dynamics of translational repres-
sion and mRNA decay in vivo.We sequenced 54
million reads generated by ribosome profiling,
which predominately map to ribosomes, tRNAs,
and coding sequences (CDS) compared with un-
translated regions (UTRs), and 59 million reads
generated by polyadenylated [poly(A)+] selection
(input RNA), which map equally to CDS and
UTRs (Fig. 1C, table S1, and figs. S1 and S2).
We focused our analysis on 4476 genes that are
present and translated at 2 hpf before miR-430
is expressed (≥15 reads per kilobase, per million
reads, RPKM) (fig. S2).

We reasoned that, if mRNA decay is the main
effect of miR-430 on their targets, a reduction in
ribosome-protected fragments (RPFs) should par-
allel the loss of input reads. Alternatively, if trans-
lation repression precedes decay, RPF loss should
precede loss of input (fig. S1). Before miR-430 is
expressed (2 hpf), we found no significant reduc-
tion of either RPFs or mRNA in wild-type com-
pared to MZdicer embryos for known miR-430

targets (15) or nontargets (Figs. 1D and 2A). At
4 hpf, once miR-430 is expressed, we observed a
significant decrease in RPF number for miR-430
targets in wild type compared with MZdicer
(P = 1.3 × 10–24, Wilcoxon rank-sum test), with-
out a corresponding decrease in mRNA (Figs. 1E
and 2A). Thus, translation repression by miR-430
is occurring independent of RNA decay. How-
ever, at 6 hpf, we observed a significant reduction
in the number of RPFs that coincided with a re-
duction in input reads (P < 1 × 10–43), suggesting
that, by 6 hpf, miR-430 targets have undergone
mRNA decay with a mild contribution from addi-
tional translational repression (Figs. 1F and 2A).
These results show that, for targets experimentally
identified by their miR-430–dependent decay (15),
translation repression occurs before the decay.

To determine the predominant effect of miR-
430–mediated regulation independent of these
experimentally identified targets, we asked wheth-
er translational repression or mRNA decay is (i)
more associated with miRNA target sites and
(ii) better correlated with miRNA seed strength.
First, we found that miR-430 target sites are
enriched in both transcripts with lower RPF at

4 hpf (P = 1.6 × 10–19 for septamers, Fisher’s
exact test) and transcripts with lower input at
6 hpf (P = 8.9 × 10–41) in wild type compared
with MZdicer, but not those with lower input at
4 hpf (P > 0.33) (figs. S3 and S4). Second, when
we identified all putative miR-430 targets that
contain 3′UTR and CDS seed matches, the level
of regulation followed the order of seed strength
(multiple sites > octamer > septamer > hexamer)
for both translational repression at 4 hpf (P= 1.2 ×
10–6, Kruskal-Wallis) and mRNA decay at 6 hpf
(P = 2.0 × 10–10) (Fig. 2, B and C, and figs. S5
and S6). Further analysis confirmed that targets
that are first translationally repressed predom-
inantly coincide with those that undergo mRNA
decay later, suggesting that most targets undergo
both regulatory effects (Fig. 3A). These mRNAs
correspond to the most strongly regulated targets
(P = 5.0 × 10–10, Kruskal-Wallis) (Fig. 3B), are
the most significantly enriched for miR-430 tar-
get sites (P < 2.2 × 10–16, c2 test, 4 df) (Fig. 3C),
and are correlated with various 3′UTR sequence
characteristics (fig. S8).

It has been postulated that loss of the poly(A)
tail may be the underlying cause of miRNA-

Fig. 1. Temporal analysis of miR-430–mediated translational repression in
zebrafish. (A) In situ hybridization (purple) for the miR-430 target gene sod1
in wild-type and MZdicer embryos at 2, 4, and 6 hpf. Decay of the target is
observed at 6 hpf in a miRNA-dependent manner. (B) Northern blot showing
miR-430 expression in wild type and MZdicer. (C) RPF and input reads
mapped to a composite transcript. RPFs mainly map to the CDS. Input reads
map to both the UTRs and CDS. (D to F) Biplots show log2-fold RPKM

differences of RPFs (y axis) and mRNA (x axis) between wild type and MZdicer
at 2 (D), 4 (E), and 6 (F) hpf. Known miR-430 targets are in red (15), non-
targets lacking miR-430 seeds in gray. Mean values per group are indicated
as lines. Mean difference between targets and nontargets are as follows: (E)
RPF 2.26-fold, P = 1.3 × 10–24; RNA, 1.05-fold, P = 0.12; (F) RPF 4.6-fold, P =
1.5 × 10–44; RNA 3.1-fold, P = 8.1 × 10–44, by two-sided Wilcoxon rank
sum test.
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mediated repression (1, 2, 15, 17, 18). Because
the input was poly(A)+-selected, lower mRNA
levels for miR-430 targets at 6 hpf could arise
frommRNA deadenylation or decay (14) (fig S3).
Conversely, the similar mRNA levels at 4 hpf
between wild type and MZdicer suggest that full
deadenylation has not occurred by the onset of
translational repression. To analyze the dynamics
of deadenylationof individual endogenousmRNAs,
we first combined poly(A) tail analysis with high-
resolution gel electrophoresis (Fig. 4A and fig.
S9). We found that the endogenous miR-430 tar-
get rhotekin2 (repressed ~80% in wild type) is
fully deadenylated by 6 hpf but is still polyade-
nylated at 4 hpf in wild type and MZdicer (albeit

slightly shorter in wild-type embryos). There was
no difference in poly(A) tail length at 2 hpf, be-
fore miR-430 is expressed, nor for a nontarget
between wild type andMZdicer (Fig. 4B and fig.
S10). Second, whenwe analyzed adipor1a, which
undergoes translational repression at 4 and 6 hpf
without decay, we found no apparent deadenyl-
ation by 6 hpf (fig. S10). Although these results
indicate that loss of RPFs occur before complete
deadenylation, they cannot exclude that initial
deadenylation might be responsible for the trans-
lational repression observed. Next, to determine
whether repression requires deadenylation, we dis-
rupted deadenylation of a green fluorescent pro-
tein (GFP)–zgc:63829-3′UTR reporter mRNA by

using an internal poly(A) tail followed by 10C
(A98C10) (19, 20) and compared repression of this
reporter with one containing a polyadenylation
signal (Fig. 4, C and D). We observed repres-
sion of both reporters compared with versions
where the miR-430 site was mutated GCACTT
to GGTCTT, even when deadenylation was re-
duced (Fig. 4C). These results indicate that trans-
lational repression by miR-430 observed at 4 hpf
occurs before and independently of complete
deadenylation.

miRNAs have been proposed to influence
protein translation by either reducing the rate of
translation initiation, reducing elongation, or ac-
celerating ribosome drop-off (1, 2, 18). Ribosome

Fig. 2. miR-430 induces translation repression before RNA
decay. (A) Cumulative distributions of mRNA, RPF, and trans-
lation efficiency differences (∆) between wild type and MZdicer
for knownmiR-430 targets (red), all genes with 3′UTRmiR-430
seed sites (blue), and nontargets (gray), with number of genes
in parentheses. P values for rank-sum tests are shown for non-
targets versus known targets (red) and versus all predicted
targets (blue). (B and C) Cumulative distribution plots with
predicted targets separated by seed type as indicated.

Fig. 3. miR-430 induces translation repression
followed by RNA decay. (A) Pie charts of different
repression categories (cutoffs defined in fig. S7).
Seventy percent of the targets translationally re-
pressed at 4 hpf go on to be deadenylated or de-
graded at 6 hpf (group I). Among transcripts decayed
at 6 hpf, 41% were translationally repressed at 4 hpf
(I), 47% were not observed to be translationally re-
pressed (II), and the remainder experienced concur-
rent translation repression at 6 hpf not explained by
the decay (III). (B) Box and whisker plot showing that
the level of RNA decay at 6 hpf is highest among
genes that are translationally repressed early. (C) The
different modes of translation repression (TR) induce
significant enrichment in miR-430 target seeds (*P <
0.05, Fisher’s exact test). See table S2 for counts.
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profiling allows us to quantify ribosome position
by examining theRPF distribution along the length
of the message. If miR-430 functions primarily by
reducing translation initiation, then we would ex-
pect lower ribosome occupancy but uniform density
along repressed messages. In contrast, if miR-430
causes ribosomal drop-off or reduced translation
elongation with the same initiation rate, we would
expect a graded distribution of ribosomes, with
fewer RPFs in the 3′ end than the 5′ end (Fig. 4E).
When we aggregated the reads of miR-430 targets
translationally repressed at 4 hpf, we found uni-
form loss of RPF density along the length of the
target mRNAs, suggesting that miR-430 inhibits
translation initiation (Fig. 4F).

We show that miR-430 first induces trans-
lational repression by reducing the rate of trans-
lation initiation and then induces mRNA decay
through deadenylation (fig. S11). Our results rec-
oncile observations in vitro (6, 7, 21–23), which
typically used short time courses and observed
repression before deadenylation, with observa-
tions in vivo (8–11, 24), which are carried out
over longer time scales after perturbing miRNA
function, where the strongest effect appears to be
deadenylation and decay. Most of the miR-430–
regulated genes undergo translational repression
followed by decay. A small group of targets appear

to be primarily regulated only at the level of trans-
lation; however, because of the limited number of
time points analyzed, it is possible that those targets
could undergo decay at later time points (15).

Previously, several laboratories, including
ours, identified deadenylation as a main effect
of miRNA-mediated regulation (15, 17, 24, 25),
leading to our initial hypothesis that complete
deadenylation (at 6 hpf) disrupts the interaction
between the poly(A)-binding protein and the cap
through eukaryotic translation initiation factor
4g, thus reducing translation of the message
(15, 18). Although it is clear that deadenylation
contributes to the rate of decay and overall level
of repression, our findings show that, in the case
of miR-430, initial repression can occur before
complete deadenylation and that reducing dead-
enylation does not block translational repres-
sion. These data align with the observation that
miRNAs can induce repression in transcripts that
lack a poly(A) but include instead a histone tail or
a self-cleaving ribozyme (17, 24). Recent studies
have reported that the CCR4-NOTcomplex is re-
cruited by GW182/TNRC6 to target mRNAs
(26–28) and can repress translation independent
of its deadenylase activity (26–29). Furthermore,
it appears that GW182 has two distinct domains
that are independently required to elicit repres-

sion and deadenylation (19, 20). These results
suggest that repression can occur independent of
deadenylation in vivo and that miRNAs trigger
these two mechanisms in parallel to ensure max-
imum target mRNA repression and decay. Yet,
the degree by which each mechanism regulates
different genes may vary depending on the 3′UTR
context [as shown inCaenorhabditis elegans (30)],
the miRNA, or even the cell type.
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miRNA-Mediated Gene Silencing
by Translational Repression Followed
by mRNA Deadenylation and Decay
Sergej Djuranovic, Ali Nahvi, Rachel Green*

microRNAs (miRNAs) regulate gene expression through translational repression and/or messenger
RNA (mRNA) deadenylation and decay. Because translation, deadenylation, and decay are
closely linked processes, it is important to establish their ordering and thus to define the molecular
mechanism of silencing. We have investigated the kinetics of these events in miRNA-mediated
gene silencing by using a Drosophila S2 cell-based controllable expression system and show that
mRNAs with both natural and engineered 3′ untranslated regions with miRNA target sites are
first subject to translational inhibition, followed by effects on deadenylation and decay. We next
used a natural translational elongation stall to show that miRNA-mediated silencing inhibits
translation at an early step, potentially translation initiation.

microRNAs (miRNAs) are short en-
dogenous RNAs that regulate protein
1expression from targeted genes by pairing to

sites in the 3′ untranslated region (3′UTR) (1).
Although some studies showed a strong corre-
lation between the diminution of protein and
mRNA levels ofmiRNA-targeted genes (2–6), other

studies showed that miRNAs principally affect
protein expression ofmiRNA-targeted geneswith-
out obvious effects on mRNA abundance (7–10).
By simultaneously measuring translational effi-
ciencies (thus indirectly levels of protein synthe-
sis) and mRNA abundance, global analyses have
shown evidence of significant mRNA destabili-

zation and translational repression (11, 12). Be-
cause only slightly more translational repression
is observed than mRNA destabilization, it is pos-
sible that most of the loss in protein synthesis
could directly result from effects on mRNA sta-
bility. Most of these studies have not, however,
evaluated the kinetics of the miRNA-related cel-
lular processes (5, 10, 13, 14). Exceptions include
several analyses of in vitro systems that con-
cluded that the effects of miRNAs on transla-
tional repression precede effects on mRNA target
deadenylation or decay (15–17), but concerns
remain that the in vitro reactions may not fully
recapitulate the in vivo situation.

We used an in vivo luciferase-based reporter
system in Drosophila melanogaster S2 cells un-
der the control of an inducible metallothionein
promoter (Mtn) (18). The reporter constructs con-
sist of one of the luciferase reporter genes [Firefly
(F-Luc) or Renilla (R-Luc)] fused at its 5′ end to
the Mtn promoter and at its 3′ end to synthetic or

Howard Hughes Medical Institute (HHMI) and Department of
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Fig. 1. Steady state evaluation of miRNA-mediated gene silencing using a copper-inducible in vivo reporter system. (A)
Measured protein amounts (luminescence) from transfected nontargeted (NT), targeted (T), and control (con) constructs
24 hours after induction. Additional expression of bantam miRNA, not Argonaute 1, results in increased repression for

synthetic bantam targeted constructs (fig. S1). (B to E) Ratios of steady-state protein amounts for synthetic and natural miRNA-targeted constructs 48 hours
after induction. In each case, mean values T SD from three independent triplicate experiments are shown as a normalized ratio of protein amounts (NT/T).
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the initiation step of translation.
was blocked before target mRNAs were significantly deadenylated and degraded. Thus, miRNAs appear to interfere with
repression reaction in the zebrafish embryo or in Drosophila tissue culture cells, respectively, and found that translation 

 (p. 237) looked at early points in theet al.Djuranovic  (p. 233, published online 15 March) and et al.Bazzini to debate. 
translation of messenger RNA (mRNA) targets, or by promoting their deadenylation and then degradation, has been open
they play an important role in the regulation of gene expression. Although whether gene activity is repressed by blocking 

MicroRNAs (miRNAs) are small, noncoding RNA genes that are found in the genomes of most eukaryotes, where
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